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w This paper is concerned with the nonlinear and linear thermomechanical theories of
=2 deformable shell-like bodies in which account is taken of electromagnetic effects. The
g% development is made by a direct approach with use of the two-dimensional theory of
o= directed media called Cosserat surfaces. The first part of the paper deals with the formu-
8&) W lation of appropriate nonlinear equations governing the motion of shell-like bodies in
ag O the presence of electromagnetic and thermal effects, as well as a general discussion of
oz appropriate constitutive equations and symmetry restrictions. In the second part of the
T paper, attention is confined to special or more restrictive nonlinear and linear theories
o=
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560 A.E.GREEN AND P. M. NAGHDI

of shells including, for example, the nonlinear membrane theory , a restricted nonlinear
bending theory (corresponding to the classical Kirchhoff~Love theory of shells) and a
plate theory, all in the presence of electromagnetic effects. Finally, in the third part of
the paper, attention is confined to specific topics, e.g. piezoelectricity in elastic plates
and electromagnetic effects in a non-conducting plate, and a demonstration of the
relevance and the applicability of the present direct formulation of a theory of electro-
magnetism for shell-like bodies.

1. INTRODUCTION

Electrodynamics of continuous media is a subject of considerable importance, with applications
to both solids and fluids. As with continuum thermomechanics, when electromagnetic effects
are absent, considerable difficulties occur when applying the three-dimensional theory to bodies
with particular geometrical features such as plates and shells. Usually, some procedure is intro-
duced to reduce the theory to two-dimensional form. When electromagnetic effects are present,
no general theory seems to be available for shells or plates, although much work has been done
for special problems such as the isothermal linear piezoelastic theory of plates. With use of a
direct approach based on a two-dimensional continuum model known as Cosserat (or directed)
surfaces, this paper is concerned with the nonlinear and linear theories of deformable shell-like
bodies in which full account is taken of both electromagnetic and thermal effects. The two-
dimensional continuum model, designated %, comprises a material surface & embedded in a
Euclidean 3-space together with P(P = 1,2, ..., N) deformable vector fields—called directors—
attached to every point of the material surface. The directors, which are not necessarily along
the unit normals to €p, have in particular the property that they remain unaltered in length
under superposed rigid body motions.

In the absence of the directors, the two-dimensional continuum model is merely a two-
dimensional material surface & appropriate for the construction by direct approach of the
membrane theory of shells. With P = 1, the directed medium %, = % consisting of the material
surface ¥ and a single deformable director is the simplest model for the construction of a general
bending theory for thin shells and plates. The details of the basic theory of a Cosserat surface
with a single director were given previously by Green et al. (1965) and by Naghdi (1972), where
additional references predating 1972 can be found. The developments just referred to are made
in the context of a thermomechanical theory of shells but allow for temperature changes only
along some reference surface, such as the middle surface, of the (three-dimensional) shell-like
body. The hierarchical theory of Cosserat surfaces, namely those comprising a material surface
with P (> 1) directors, was included in a paper by Green & Naghdi (1976), who subsequently
also enlarged the scope of thermal effects by incorporating into the basic theory the effect of
temperature changes along the shell thickness (Green & Naghdi 1979). This development was
achieved by means of an approach to thermomechanics in the three-dimensional theory intro-
duced earlier (Green & Naghdi 1977), which provides a natural way of introducing two (or more)
temperature fields at each material point of the surface & of €. Additional background infor-
mation on purely mechanical or thermomechanical theories of shells can be found in the references
already cited and in a recent paper of Naghdi (1982).

We now turn to some background information concerning electromagnetic effects. At present,
a (three-dimensional) theory of deformable media in the presence of electromagnetic effects may
be developed at a number of levels of generality. One approach is based on a mixture theory in
which the thermomechanical continuum is one constituent interacting with electric particle
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ELECTROMAGNETIC SHELLS AND PLATES 561

continua which, in turn, are acted upon by forces due to the electromagnetic fields. Another
approach, adopted here, is to ignore details of the electric particle continua and consider
only a single phase theory in which the continuum is acted upon directly by electromagnetic
forces. We use an approximate non-relativistic theory in which the balance equations and also
Maxwell’s equations are invariant under a Galilean transformation of the form

PRt = Qr¥ 4l tt =1t

where r* is the position vector of a material point of the body, ¢ denotes time, the use of a plus
sign (as in r*+ and ¢*) refers to the corresponding quantities as a consequence of superposed
rigid body motions, 4 is a constant vector and Q is a constant orthogonal tensor. In addition,
constitutive equations are to be unaltered by a constant superposed rigid body velocity and a
constant superposed rigid body rotation. With these limitations, many authors have derived
values for the three-dimensional electromagnetic force f¥, the electromagnetic couple ¢ and
the rate of supply of electromagnetic energy w*, and have discussed various constitutive relations.
A survey of these various theories on the subject, together with extensive references, are given in
a monograph by Hutter & van de Ven (1978). The survey of electromechanical interaction effects
is presented in the form of five models, which the authors (Hutter & van de Ven 1978) refer to as
the two-dipole models (i) and (ii), the Maxwell-Minkowski model, the statistical model and the
Lorentz model. Although these models yield different values for the electromagnetic force, couple
and rate of supply of electromagnetic energy, Hutter & van de Ven (1978) show that for a certain
class of constitutive equations all theories are equivalent within the non-relativistic approxi-
mation. For our purpose, we select here three-dimensional values for f¥, ¢¥ and w* that are a
slight modification of the Maxwell-Minkowski model discussed by Hutter & van de Ven (1978).
As will become evident, the theory for shells based on the Cosserat surfaces €p will reflect the
properties of this model, whose main equations are summarized in Appendixes A, B.

The linear theory of plates and its application to anisotropic piezoelectric plates has received
much attention from a number of authors. Among these we mention Tiersten & Mindlin (1962)
and Tiersten (1969), who cite additional references. These authors derived their equations from
the three-dimensional equations of linear piezoelasticity with the help of expansion methods due
to Cauchy and Poisson and the variational method of Kirchhoff, together with the use of cor-
rection factors involving the thickness-shear strains. The expansions are in powers of the thickness
coordinate z of the plate. More recently, Bugdayci & Bogy (1981) used expansions in terms of
trigonometric functions of z since these were more suitable for the particular boundary conditions
they used on the major surfaces z = + 34 of the plate. The linearized version of our developments
when specialized to a plate, can be used to accommodate any of the surface conditions used by
the foregoing authors and with as much generality as that in the paper by Bugdayci & Bogy
(1981).

Specifically, the content of the paper is as follows. First, with reference to Cosserat surfaces €p,
in § 2 the basic thermomechanical theory with extensions to electromagnetic effects is summarized
and the consequences of the conservation laws in direct (coordinate free) notation are recorded
in both spatial and material (or referential) forms. This is followed in § 3 by appropriate electro-
magnetic balance equations for a moving shell-like body. These balance laws are analogues of
corresponding conservation laws in the three-dimensional theory, which are summarized and
discussed in Appendixes A and B.In § 4, we consider constitutive equations for magnetic, polarized
thermoelastic Cosserat surfaces €p. Section 5 contains some discussion concerning restrictions

40-2
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562 A.E.GREEN AND P. M. NAGHDI

placed on the specific Helmholtz free energy function by symmetry properties, particularly the
separation of geometrical symmetries in the shell-like body from material symmetries.

In the next four sections (§§ 6-9), we consider special cases of the general theory such as a
restricted nonlinear theory of shells (corresponding to the classical Kirchhoft-Love theory), the
membrane theory, and linear plate theory, all in the presence of electromagnetic effects. The
linearized theory of plates, based on a Cosserat surface with material surface ¥ taken to be a
plane surface in the reference configuration of %, is dealt with in some detail in § 6 for an aniso-
tropic plate. The constitutive coefficients in this development are determined by an appeal to,
and comparison with, certain features of the Helmholtz free energy and related Gibbs free
energy functions in the three-dimensional theory. The details of these functions are discussed in
Appendixes G and D. A partially restricted linear theory of shells in which the effect of transverse
shear deformation is retained is discussed in §7; and again the identification of constitutive
coefficients, with the help of results in Appendixes C and D, is indicated in a manner similar to
the procedure used in § 6. The next two sections (§§8, 9) deal, respectively, with a restricted
nonlinear theory of shells and the nonlinear membrane theory, including the linearized
results. In the development of both §§8 and 9, full allowance is made for electromagnetic
effects.

The remainder of the paper is devoted to further special cases and applications of earlier
developments. In § 10 the partially restricted linear theory of § 7 is used to discuss electromagnetic
effects in a non-conducting plate whose major surfaces are also heat insulated. Again with use of
the partially restricted linear theory of § 7, the piezoelectric crystal plates are briefly examined
in § 11 and an alternative representation of the plate theory is discussed in § 12, where application
to an elastic wave guide is also discussed. We conclude the present paper with two further
applications, which are discussed in §§ 13 and 14 for a circular cylindrical membrane and for a
wave guide regarded as a rigid shell.

2. SUMMARY OF THERMOMECHANICAL THEORY WITH EXTENSIONS
TO ELECTROMAGNETIC EFFECTS

We summarize in this section the main kinematics and the basic equations of the thermo-
mechanical theory of Cosserat surfaces %p, with extensions to include electromagnetic effects,
and refer to Naghdi (1972, 1982) and Green & Naghdi (1976, 1979) for details and additional
references. Let the particles of the material surface of €, (with P directors, P = 1,2, 3, ..., N) be
identified with a system of convected coordinates 6% (¢ = 1, 2) and let the surface of € in the
present configuration at time 7, hereafter referred to as 4, occupy a two-dimensional region of
space Z bounded by a closed curve 0. Similarly, in the present configuration, an arbitrary part
of the material surface of %p occupies a portion of the two-dimensional region #, which we
denote by £ (< %) bounded by a closed curve 0. Let r and dy (N = 1,2,...,P)~each a
function of 6* and ¢-denote, respectively, the position vectors of a typical point of 4 relative to a
fixed origin and the directors at r. We denote the covariant and contravariant base vectors on 4
by a, and a%, the unit normal to 4 by a; (= a%), and the covariant and contravariant metric
tensors on J by 4,5 and ¢*/. A motion of the Cosserat surfaces €p is defined by vector-valued
functions, which assign position r and directors dy to each particle of the material surface of €p

at each instant of time, i.e. = r(0%0), dy = dy(0%1). (2.1)
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ELECTROMAGNETIC SHELLS AND PLATES 563

Also, a,=a,(00t) =0r[00%, a,,=a,a; a-a;=273}5 a¥t= aa-aﬁ,l
2.2
ata; = a,xa,, a=det(a,), o =[aa,a5] >0, ) (2:2)

where &% is the Kronecker delta. The velocity vector » and the director velocity vectors wy are

defined by .
v = i’, wN = dN’ (2.3)

where a dot denotes differentiation with respect to £, with 6= held fixed. Throughout this paper
we use standard vector and tensor notation. Greek indices take the values 1, 2, and the usual
summation convention over a Greek superscript and subscript is followed.

Consider now a reference configuration, which we take to be the initial configuration, of the
Cosserat surfaces %p. Let the material surface of % in this configuration be referred to by with
R as its position vector; let A,, A* denote, respectively, the covariant and contravariant base
vectors along the §*-curves on &, Az (= A3) the unitnormal to &, and 4,4, A*f the covariant and
contravariant metric tensors on &, respectively; and let D y be the reference directors at R. Then

R = R(6%) = r(6%,0), Dy = Dy(6%) = dy(6%,0),
A, =0R/30*, A=A, As A*Ay=20f A=A A4, (2.4)
AtA; = A x A,, A =det(4,,), At=[A;A;A;]>0.
We also define a set of linearly independent vectors dy; and their reciprocal vectors dj

(i = 1,2, 8), as well as their corresponding values D, and DY, in the reference configuration, by

the formulae ) ‘
dy,=a,, dyz=dy, dy-dy;=0, dy=dya = dNifaiil

. . (2.5)
Dy,=A, Dy,=Dy, Di-Dy, =8, J

where 8} is the Kronecker delta in 3-space. There is no summation over repeated values of N.

For some purposes it is convenient to use a direct (coordinate-free) notation. To this end, with

some changes but in a manner similar to that of Naghdi (1977, 1982), we introduce a measure of

deformation gradient tensor F, director gradient tensors G and Gy, the velocity gradient L
and the director velocity gradient Ly by:

F=ai®Ai, FN=dNa®D7V+dN®D?V’ ﬁF=Ai®Ai,

ai=FA7:, de= FNDNM’ dN=FNDN’ detF=a%/A%,

Gy=dy,®D5+dy®D}, dy= GyDy,
dy,. = GyDy, = dy;, 08" = dy',a;, (2.6)
tGy =dy,®dy+dy®d}, zGy=Dy ,®D%+Dy® DY,
L=6,9a, F=LF,

Ly=wy ,®d{+wy ® dy, GN = LyFy.

Here a comma denotes partial differentiation with respect to 6%, the symbol ® denotes tensor
product and there is no summation over repeated indices N.

In what follows, for convenience and completeness, we express the basic equations of the theory
in both spatial and material (or referential) forms. We begin with the spatial form of the
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564 A.E.GREEN AND P. M. NAGHDI

conservation laws for mass momentum, director momentum and moment of momenta, which may

be stated ast d q
_d—tfgp o=0, (2.7)
d P
—f p('v+ > yM"wM) do-=f p(f+£.) dcr+f nds, (2.8)
diJ» M=1 2 oz
P
d f p(yN°v+ z yNMwM) do = f (PN + 1Y) —kNydo + | m¥ds, (2.9)
dt) s N=1 2 oz

P P P
Ei—f {rx(v+ > yM°wM)+ > de(yN“v+ > yNMwM)}de'
dt) M=1 N=1 M=1

=f {rx(f+fe)+ 5 de(lN+lé")+ce}pda'+f (rxn+ 5 demN)ds. (2.10)
P N=1 4

N=1
In (2.7)-(2.10), p = p(67,¢) is the mass per unit area of 4, do is the element of area and ds is the
line element on 4, y¥° and ™ are the inertia coefficients, which are functions of ” and inde-
pendent of time ¢, n = n(607,t; v) is the force vector, m~ = m¥(67,¢; v) are the director force
vectors, k¥ are the internal director forces per unit area of 4 and

v =v,0% = 1°qa, (2.11)
is the outward unit normal to 02. Also, f is the assigned force vector, I¥ are the assigned director
force vectors and f,, I, c, are, respectively, the force vector, the director force vectors and the
(axial) couple vector due to the electromagnetic fields, all per unit mass. The assigned field f may
be regarded as representing the combined effect of (i) the stress vector on the major surfaces of
the shell, denoted by f,,, for example that due to the ambient pressure of the surrounding medium,
and (ii) an integrated contribution arising from the three-dimensional body force denoted by f;,
for example that due to gravity. A parallel statement holds for the assigned fields 1. Therefore
we may write f=fotfe, W=+ (2.12)
We could, of course, incorporate f, and I as parts of f and IV, respectively; but, for our present
purpose, it is more convenient to keep the electromagnetic effects f,, 1Y separate from those of
the purely mechanical effects represented by (2.12).

Using a direct (coordinate-free) notation (Naghdi 1982, § 8), the local field equations resulting
from (2.7)-(2.10) can be expressed in the forms}

p+pdivio =0 or pat = pydi, (2.13)

P
p(o+ 3 yoiiy) = p(ffe) +div, N, (2.14)

M=1

P
p(yN"i: +MZ=1yNM1bM) = p(I¥N + 1Y) — kN +div, MV, (2.15)
P

pl,+ N—NT+ 3 (KN —KNT 4 MN,GE — ,G y MNT) = 0, (2.16)

N=1

1 The notation for the contact force 1, the contact directar force m and the surface director force kis the same
as that in Naghdi (1982), but differs from Naghdi (1972), Green & Naghdi (1979) and most of the previous papers
on the subject. In fact, the vector fields 12, m, k of the present paper correspond, respectively, to N, M, m in
Naghdi (1972), Green & Naghdi (1979) and most of the previous papers. Also the notation for the inertia coef-
ficients yM° and yM¥, which occur in (2.8)-(2.10), differs from the corresponding notation in previous papers.

% The second-order tensors N, M in (2.14)-(2.16) and their tensor components N?%, M?* in (2.17) are the same
as those in Naghdi (1982) but are the transpose of the corresponding quantities in Naghdi (1977). The components
Nia Mie were used in the paper of Green ef al. (1965), in order to conform with the linear transformations Nv and
My; but their transpose, namely N%¢, M*¢, was adopted in subsequent papers, so that the notation would be in
agreement with that of the classical shell theory. In this connection, see also Naghdi (1982, §8).
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ELECTROMAGNETIC SHELLS AND PLATES 565

P
or pCo+a,x Net S (dy x kN +dy , x MN2) = 0, (2.164)
N=1

whereI', 2 = ¢, x z for every vector 2. Also, in (2.13)-(2.16), the second-order tensors N, MY, K¥

are defined by
n=Nv=Nw, N=N*®a, N*=Niea,

my = M¥ = M¥y,, MY = MV Qa,, MY+ = MNiq, (2.17)
kYN = kNia; = kYa', KN = kRN ®@dy
and div,o = v ,-a%
atdiv, N = (atNa?) , = (atN*) ,, (2.18)
atdiv, MY = (atMPVa®) , = (a3 M™) .

The balances of entropy and energy for every part of the material surface of € occupying a
region Z in the present configuration are (see Green & Naghdi 1979):

c%fgpﬂdo =fg,p(s+§) da-—fwkds, (2.19)

g—f pyydo =f plsy+&n) da—f kyds (N=1,2,...,K) (2.20)
4 dt)» P W
an

P P P
Ef (e+%v-v+ T yMowy+i X X yNMWN'WM)PdO'
dt ) » N=1 N=1M=1

P

= [ [+ Z o+ B (tN+z§>-wN+w}pda
P N=1 .

o7

In (2.19)-(2.21),9 and 7 are the entropy densities, ¢ is the internal energy density, k and £y are
the entropy fluxes, % and 4y are the heat fluxes, £ and £y are the internal rates of production of
entropy, s and sy are the external rates of supply of entropy, r and ry are the external rates of
supply of heat, and

r= 03, TN = QNJN, h = 0/‘:, hN = eNkN (.N = 1, 2, ceey K), (2.22)

wheret (> 0) and 6y represent the effects of temperature variations in a shell-like body. The
surface temperature 6 represents the absolute temperature in the reference surface of the shell-
like body, while the scalars 6y may be regarded as accounting for the temperature variations
across the thickness of the shell. Also, the scalar quantity @ on the right-hand side of (2.21)
represents the combined effect of both the rate of work of the electromagnetic couple ¢, and the
rate of supply of electromagnetic energy due to the magnetic field. ‘

The local field equations that correspond to (2.19) to (2.21) are:

pi = p(s+&) —div,p, k=p-v, |
piy = p(sy+En) —divspy, ky =PN"’aJ
where adiv,p = (atp-a®) ,, atdiv,py = (adpy-a2),. (2.24)

(2.23)

1 No confusion should arise from the use of the symbol 6 in the designation of the temperature fields as
0, 0,,0,, ..., 0k and the notation 87 = (6%, 62) for the convected coordinates.
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566 A.E.GREEN AND P. M. NAGHDI

After elimination of external body forces and external rates of supply of heat with the help of
(2.14), (2.15), (2.22) and (2.23), the field equation corresponding to the energy balance (2.21)
may be written as

K K K
—p(é—ﬁﬁ—- s 0N77N)—p(0£+ > eNgN) LpT—pg— > pygx+P=0, (2.25)
N=1 N=1 N=1

where the temperature gradients g and gy are defined by
g =grad,0 =0 ,a*, gy =grad,Oy =0y ,a* (2.26)

P P
and P=N-L+ 3 (KN+M¥)-Ly=Neey + 5 (k¥ wy+ MVewy ) (2.27)
N=1 N=1

represents the mechanical power. After suitable choice of constitutive equations (2.25) is to be
regarded as an identity for all thermomechanical processes (Green & Naghdi 1977).

Integral balance equations, corresponding to (2.7)-(2.10) and (2.16)—(2.18), in terms of field
quantities in a reference state may also be recorded but we do not list these here. We note,
however, they may be obtained from the foregoing equations by replacing £, 02, do, ds with
Pg, 0Py, dog, dsg, respectively, and by replacing '

P, in,mY, RN}, {h hy, k, ky}, (2.28)
with the corresponding quantities in the reference state, namely
pr = p(a/A)}, {gn,gm", KV}, {gh, phy, vk, vkn}, (2.29)
respectively. We also note (Naghdi 1972, equations (9.86), (9.87)) that
(=N kY, RMN?} = (pg/p) {N*, kN, MY}, } (2.30)
&NFT, g MVF?, Fpp, Frpy} = (pr/p) {N, MY, p, py}.

The field equations in the reference state are then given by
pi(9+ E y5b) = pr(f+1) + DiviN, (2.31)
pr(y05 + 3 yiby) = pr (1 + 1Y) Y+ Div, o MY, (2.32)
prle +gNFT—F g NT +N§1 (RKNFy — Fy g KNT + g MY G — Gy MNT) = 0, (2.33)
P Co+a, % o N* +N§1 (dy x kY +dy, , x n MY) = 0, (2.334)
Pri = Pr(s +&) —Divigp, priin = pr(sy+£&n) —Diverpy, (2.34)
—Pr (6 -0 —N§=1 0N"7N) —Pr (05 +N§=31 HNgN) +PRW—RrP 'Rg—NglRP ‘rEv+ P =0, (2.35)
where r€ = Grad,0 = 0 ,A*, gy = Grad,0y = 0Oy , A%, (2.36)
Py=gN-F+ él(RKN'l‘RMN) *Gy = pNe- v+ Nil(RkN‘ wy+rMYe-wy ), (2.37)

r? = rNgv =g N*gV,, gr¥ =gV, 4% gpN=3N*® A, gN*=3zNA, (2.38)
rMY =gMV¥gv = MMy, MV = MNe® A, pMN:= rMYNA, (2.39)
rEN = gk A; = gk A%, RKY = zkN¥ ® Dy, (2.40)

vk =RrP'RY> RrEN = rPN'RY (2.41)
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ELECTROMAGNETIC SHELLS AND PLATES 567
and where . .
A%DIVSRN = (AéRNA“),a = (AéRN ),aw
A¥Div,g MY = (A g MY A%) , = (A g MY ,, (2.42)

A4 Div,gp = (d¥zp-A%),,, AiDivppy = (digpy-A%),.

The various kinematical and kinetical results in this section are recorded for Cosserat surfaces
%p (with Pdirectors, P = 1,2, ..., N). When considering a Cosserat surface with a single director,
namely when %, = €, it is convenient to adopt the notations

d=d w-=w, D =D, d,=d, G, =G, etc, (2.43)

for the kinematical quantities in (2.1),, (2.3),, (2.4), and (2.6). Correspondingly, for the
thermomechanical quantities in (2.7)—(2.10) and (2.13)-(2.18), we write

mi=m, P=I M.=M, M=*=M: k=£Fk K =K. (2.44)

3. ELECTROMAGNETIC EQUATIONS FOR COSSERAT SURFACES

We complete in this scction the basic theory of Cosserat surfaces by a direct approach, in the
presence of electromagnetic effects. For this purpose, we introduce the appropriate electro-
magnetic variables guided by the exact three-dimensional developments summarized in
Appendixes A and B. We assume that electromagnetic effects are represented by the following

field quantities:
the electric field vectors, e} = ¢¥; a’; \

the electric displacement field vectorst, d N = Z}v a;
the magnetic field vectors, hi = k¥, a%; (3.1)
the magnetic induction field vectors, by = by a;;

the current density field vectors, j¥ = j¥ a;;

the free charge represented by the scalar fields, ¢y;

allfor N=0,1,...,L.

Having defined the above field quantities, we now proceed to record the appropriate balance
equations for a moving shell-like body, which are analogues of the three-dimensional balance
equations (A 1)—(A 3) associated with the names of Faraday, Ampere and Gauss. We only record
here the main results concerning the electromagnetic equations for Cosserat surfaces and for
details refer the reader to Appendix B, particularly equations (B 20)-(B 23). Thus, corresponding
to the Gauss equations (A 3) and in view of the developments of Appendix B, we assume that the
fields b, d,, satisfy the balance laws

M A
bM’vdS=f ( Z XﬁbK_bM)’dG, (3.2)
(4 2 \K=0

- M - A
f dM-vds=f eMda'+f (z ;&ﬁdK—dM)'da. (3.3)
02 2 P \K=0

1 We use an overbar to designate the electric displacement fields, i.e. dy, (rather than the more customary
symbol dy) in order to avoid confusion with the notation for the director fields such as dy in (2.2).


http://rsta.royalsocietypublishing.org/

JA \
! B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

568 A.E.GREEN AND P. M. NAGHDI
Similarly, we assume the analogues of the Faraday and Ampere laws in the form
(—i-f by do = ——f e¥-dr, (3.4a)
q dt)s 02 .
—j (agxby) xde =f (e}“w~a3)dr+f L[(asx by,) x de] +f (é}l’}— ¥ Xﬁe*K) x de,
dt) s o7 2 2 E=0
(3.40)
Ef iiM-da=f h}“wodr—f j%-d, (3.50)
dt) » o7 2

—%L} (agx dy) xde = fw (h¥;-a,) dr +fg,{(a3 xj3) xde — L[(agx dy;) x de]}
+ f (fz;}} -3 wmhﬁ) «da, (3.5)
2 K=0
where do = azdo and by, d s €315 fl}“u, due to contributions from the major surfaces of the shell,
are given by . . -
by = [xu(2) b'a;gt/at]s,  dy = [Yu(2) d'a;gh/ab])
¢ =vu(@ et a'ls, i =[Yu@)irals.
Equations (3.2)—(3.5) hold for M =0,1,2,...,L. We do not record explicitly equations for
conservation of charge, since the equations for conservation of charge in the three-dimensional
theory may be derived from (A 1)-(A 3) and thus may be omitted here
The field equations that correspond to (3.2)-(3.5) and may be regarded as Maxwell equations
for shell-like bodies are

M A
div, [(ay % by) x a5] = div, (Vira,) = ad(bal),. = £ Wibx—bur)-a  (37)
K=0

(3.6)

- — - M - A
div, [(ay x dyy) x @3] = div, @ 0,) = AT, = ( 3 ¥de-du)-agren (39)

. —_ M
by +bydivyo—Lb,, = —curl,el; —a; x Key —ag x (é},‘}— > Xﬁe”fz) , (3.9)
K=o

= - - - A M
dM+deivsv—LdM=curlsh}“,,—j}’,}+a3th}‘f4+a3x(h}“w— b zﬁﬁh}’}), (3.10)
K=0

where div, v is defined by (2.18),,
curl;el; = a* xe3; ,, curl hy = a*xhy, (8.11)
and K is the surface curvature tensor. The field equation (3.9) corresponds to the two balance

equations (3.44,5), and equation (3.10) corresponds to (3.54, 5).
Similarly, the material forms of balance equations (3.2)—(3.5) are given by

M A
J By - gvdsy =f ( 2 XJZIZIBK—BM) *dog, (8.12)
(7% 43 0

K=
- M - A
O0ZR Pr PR \K=0
dt PR OZR

d A M
1 (a,xBy) xdog =f (Eyr Ag) dR +f (EM- 5 X}gEK) xdog, (3.143)
dt) 7z 87r Pr K0

g‘ DM'daR = III‘I'd.R—'Jv JM'dGR, (3.15a)

dt Zr [il75° PR
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ELECTROMAGNETIC SHELLS AND PLATES 569
-if (Ayx D) x dog, =f (Hyp Ay) dR+f (Ayx Jyy) x dog
dt) o o7x Pr

A M
+L (HJV,—FE0 gbf,"}HK) «dag, (3.158)
where . ¥ B
[XM(Z) BiA;GY/A¥]2, D, = [¢y(z) D'A;GY/ A} g

Ey = [vul2) E AT, Hog = [Wu() HiATg
and the vectors in (3.12)—(3.15) are related to those in (3.1) by equations (B 25) in Appendix B.
The field equations that correspond to (3.2)-(3.5) are

M A
Div, [(Ay % Bur) x As] = Div, (BirA.) = A-HBiudb,, = ( 3 x5Bx—Bu)- 4, (3.17
K=0

(3.16)

- M —_ A
Div, [(A, x D) x Ag] = Div, (D% A,) = A+ D% 43) , (z mDK—DM)~A3+EM,

K=0

(3.18)
. — A M
BJ[,I=—CurlsEM—A3XRKEM‘—A3X(EM— Z XI%EK), (3.19)
K=0
= — A M
DM=CurlsHM—JM+A3xRKHM+A3x(HM—— > M[‘IHK), (3.20)
K=0
where Curl,Eyy = A*x Ey; ,, CurllH,, = A*x Hy, ,. (3.21)

For the complete theory summarized in §§2 and 3, we also need explicit expressions for
W, fe, €, (or I'y). In view of (B4) and (B 26)-(B 31), we adopt the following values for @, I', or ¢,:

patw = pp Atw
—a%[P+ Y {ek-jk +ek- (dK+de1v v—Ldg) +h%- (I.)K+bKdivsv—LbK)}]
E=0
L o N
where -
P P
P, = Ne'L+ Z (KY+MY)-Ly=Nzv,+ X (BY-wy+MY*wy ),
N2 N=1
- . ., (3.23)
Pre = gN,* F+ Z_1<RKéV+RMg)'GN =RN5'”,4+NZ_]1 (Rklev°wN+RM<lava°wN,a)
and

patly = pp AT,

P
= a{N.— N+ ¥ (K¥—KJ"+ MY G} —,GyMY")}
N=1
P
= AHg N, F* —F g NJ + Z (RKéVFI'I\;'"FNRKéVT'i'RMgGI'I\}—GNRMéVT)} (3.240)
or patc, = pp A¥c, = at{a, x NZ+ 2‘, (dy x BY +dy , x MY*)}

=1
P
= A¥a, x g N3+ Z (dy x gkl +dy , x g M)} (3.245)

We note that under a Galilean transformation of the vector r and directors dy, namely

rt = Qr+ryt, df = Qdy, (3.25)
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570 A.E.GREEN AND P. M. NAGHDI

where r, is a constant vector and Q is a constant orthogonal tensor, the following transformations
hold for the electromagnetic quantities:

di; = Qdy, bir = QbydetQ, eif = Qejy,
h3 = Qhj detQ, ji = Qji, e = ens
Ey; =E,, Hj;=HydetQ, Dj;=D,detQ, B*=B,
Ji = JydetQ, Ejf = E;detQ.

When the Cosserat surface is subjected to a constant rigid body velocity and a constant super-
posed rigid body rotation, the same relations (3.26) hold with det Q = 1.

(3.26)

4. MAGNETIC, POLARIZED THERMOELASTIC COSSERAT SURFACES

We begin our discussion of constitutive equations for magnetic, polarized thermoelastic
Cosserat surfaces by introducing a specific Helmholtz free energy ¥ defined by

K L -
Y=ec—0p— 3 Oyny—p ' X (elrdy+hi by)
N=1 M=0

K L _
=¢e—0n —N§1 0N77N‘“P1—11MZ_0(EM'DM‘I'HM’BM)~ (4.1)

Then, with the use of (3.22) and (3.23), the energy equation (2.25) can be reduced to
< i K K
—P(Kb +90+ X% 77N0N) -—p(t9€+ 2 0N‘§N) —Pp'8— 2 Pn'8n
N=1 N=1 N1
L - . - .
+ 3 (e¥jy—dy-ey—L-eiy ®dy—by-hy—L-h3 @ by)+P+PF, =0. (4.2)
M=0

The material form of the reduced energy equation can be found by direct transformation of
(4.2), or from (2.35), and is given by

. K K K
—Pr ('ﬁ""ia + X ”NaN) —Pr (‘%4‘ pX 0N§N) —rP'r€— 2 rPn'REN
N=1 N=1 N=1
L - . .
+MEO (Ep* Iy =Dy Epy— By Hyp) + P+ Pre = 0, (4.3)
where Py, Py, are defined by (2.37) and (3.23), respectively.

In a complete theory, in addition to the field equations of § 2 and the electromagnetic equations
of §3, constitutive equations must also be specified for appropriate dynamical, thermal and
electromagnetic dependent variables. Here we specify the constitutive equations for a given
medium by the set of variables

lﬁ, N> MNs g, gN, b, PstZ’ll:ls aMs sz 1

N(or N%), K* (or kS), MS (or MS“).J
Further, in accordance with the recent procedure of Green & Naghdi (1977), we then regard the
energy equation (4.2) as an identity to be satisfied for all processes subject to the electromagnetic
equations (3.7)-(3.10).

In the presence of electromagnetic and thermal effects, elastic Cosserat surfaces are defined as
those whose constitutive response functions depend on the variables

03 0N: g: gNs F: GS’) e;lkls h?l/!: 0“: (4'5)

(4.4)
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forN=1,2..,K;M=0,1,2,...,
configuration, namely

L;§=1,2,..., P;aswell asfunctions of values in the reference

0, ®F, RGs. (4.6)

In the reference state 0y is zero and @ is the constant value of 6. Alternatively, the set of variables
(4.5) may be replaced by the equivalent sets

05 6N> g: gNa aa) dS: dS, o’ eiklb hfm (4‘7)
or 0: 0N’ Rg’ RgN, F, GSs EM: HM9 (4‘8)
or 0> 6Ns Rgs RgN: a, dS, dS,a’ EM: HM (4'9)

First, we set aside any invariance requirements under superposed rigid body motions, and use
the energy equation (4.2) or (4.3) as an identity for all thermomechanical processes subject to
the equations (3.7)—(3.10) or (3.17)—(3.20). It follows that ¥ must be independent of g, gy or
r&> rEy- Then, omitting explicit display of the reference variables (4.6) and 6%, we obtain

1;” = ‘1’1(0) 6N) Fs GS’eJﬂl}, hl’l;l)s \
_ 9% __% 5 oYy - %
77“‘—_6?,7: 771\/__6—5;) d pa * 9 bM—_pahEx:I’
o _ (4.10)
N+N,=p aFlFT+Mz_:_O(e;'.}® dy+hi® by,
K8 + K5 + MS + MS .—_—pa—gng.
i~

In view of the form (2.17) for N we note that ¢, is subject to the restriction

0 L -
p aﬁ‘l Ag+ S (el @ dy+hi @ by) a, = 0. (4.100)
M=0
Alternatively, we have
‘ﬁ = ;02(0, 6N> a,, ds, dS @ e}"m hlﬂl:l)a \
__ %y _ 0y 4 Yy _ %,
7]—_—67’ ”N_"'a'z,TN"a dM pae*a 'bM"’ E)h*’
Ne+ Ne = ‘”2+ = (eM®dM+hM®bM) o (4.11)
- E~0 {(efyx dy +h3 ® by)- (a* @ a5)}ay,
S 102 Sa Se %
kS + kS = P3d. M52 + M3 —pads,a }
or ¢ = '1”3(0: eNs F’ GSs EM> HM)’ \
_ % __ 9% 5 (2 s
N = 60 sy In= _5@9 DM = ’ORaE BM "'pRaH 3 (4.12)
0 ) 0
rN+grN, = Pn%s RMS +p M + K5 + 3K = Pnaga ) al';‘aAs = 0)
or ¢‘ = ¢4(0 O, a,, dSa dS @ EM’ HM)’ )
__ %Yy __ %y s 0y, 0y,
n=- aﬁ, NIn = 60 ’ DM" pRaE H BM pRaH ’ (4.13)
.. 0
RNa+RN pRawll) RkS+Rk§ = pRa_lg;‘l’ RMSa+ Msm = Pr adﬁ;
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572 A.E.GREEN AND P. M. NAGHDI

Also K K L .
—p(0§+ > 0N§N) —pg— X PvEnv+t 2 eirji=0,
N=1 N=1 M=0
. - | (4.14)
‘“PR(9§+ > eNgN)"RP’Rg" > rPvrENtT X EpJy=0.
N=1 N=1 M=o

The expressions (4.10) and (4.11) must satisfy the moment of momentum equation (2.16) while
(4.12) and (4.13) must satisfy (2.33). This will yield restrictions on the form of ¢ that are equiv-
alent to requiring that ¥ be unaltered under a (static) rigid body rotation. It is, perhaps,
simplest to impose this condition on the form ¥, in (4.13) since only a,, dg, dg , are changed by
a rigid body rotation and invariance conditions imposed on ¥, as a function of a,, d, d , have
already been discussed elsewhere (see for example Naghdi 1972; Green & Naghdi 1979) and is
easily extended to P directors. It follows that ¢ may be reduced to the different form

¥ = ¥5(aup dsis dsias 0> Ons Eyg, Hypy Ay, Dy, Dy, O 6%). (4.15)
Then, with the help of (2.2), (2.4), (2.6), (2.17) and (2.30), it follows from (4.13) that

. o . o
Sty ST _ 5 Sia Sio 5
Bk = pags MPe+ M = parr,
N#e 4 Nb= — 2 {(K5* + kS*) dgP + (MS*r +- M5*r) dgP} = p(a'/f5 gf‘i)
B
(4.16)
N N3 5 ({54 K5 d® o (Mo 4 M3) dit, — (50 -+ ) d
S=1
M M) 4 =
= _% = _% — a¢5 a’ﬁs
N = 20’ N = aeN’ DM pRaE BM pRaH H )

and )
(rAS? +gAST) AE = (RS +ES®) (a- AY) ad,

(p Vi + g N A} = (Nke 4 N*2) (- A?) ab, (4.17)
(R Moy ME™) b = (M5¥ 4+ ME) (@ A7) .

5. SYMMETRIES

To model the main features of the response of a (three-dimensional) thin shell, restrictions
must be imposed on the constitutive equations of the theory of Cosserat surfaces. In the absence
of electromagnetic effects, such constitutive restrictions have previously been (Naghdi 1972,
Green & Naghdi 1979) discussed in relation to certain geometrical and material symmetries. In
particular, it was assumed in the previous discussions that the shell in its reference configuration
has the following properties: (i) it is homogeneous and at constant temperature, (ii) it has certain
material symmetries and (iii) it is of uniform thickness , and normals to the middle surface meet
the major surfaces of the shell at points equidistant from the middle surface. We adopt a method
slightly different from that used in previous work, especially as we need to consider material
symmetries that do not necessarily include symmetry with respect to normal directions to the
middle surface.

To deal with property (iii), we assume that the Cosserat surfaces » model a (three-dimen-
sional) shell-like body defined by (B 1) of Appendix B, for the region —}4 < z < 3h. Weidentify
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the material surface & of %, with the middle surface z = 0 and use the relative kinematic
IMEASUres €,4, Yrss Kri, defined by

Cupp = %(aaﬂ—Aaﬂ)9 Yri = dri—Dri>  Kria = dria — Dria- (5.1)
The specific Helmholtz free energy function (4.15) may then be replaced by
Y= lp(eaﬂ, YRis KRias 0> Ons Enris Haris Dris DRos Aaﬂ)3 (5.2)

and, in view of property (i), we have suppressed 6# and the constants 4 and.®.

Although, in the present theory of Cosserat surfaces, it may not be possible to relate ' in
(5.2) exactly to a corresponding three-dimensional Helmholtz free energy function by a relation
of the type (C 10) of Appendix C, we are guided by (C 11) or (C 12) in formulating the appro-
priate condition to be satisfied by ¥ in (5.2) in order to model property (iii), a geometrical
symmetry. We observe that the properties (C 11), (G 12) depend on the particularly way the
functions r*, R*, 6*, E;, H; are represented so, in parallel with Appendix C, we consider two
cases (a) and (4); but, of course, these may not be the only possibilities.

To model the symmetry property (iii) we impose on the function ¥ in (5.2) the following
conditions in line with Appendix C:

case (a)
'ﬁ(eaﬂ’ ( - 1)R+17Ri’ ( - I)RKRiaw 03 (_ 1)8633 ( - I)MEM?:’ ( - I)MHMiy
(= 1)+ Dg;,(— 1)¥ Dyyiyy Ao p)

= !ﬁ(eacﬂ’ Yris Krias 05 Os5 Enris Haris Dris Drias Azxﬂ); (5.34a)
case (b)

(eap (— DB gy, (= D) Bkpyy, 0, (= 1)5 05, (= )M Eyp, (= 1)M Eppg, (— 1)M Hyy,,
(—1)MH H o, (= 1)+ Dy, (— 1)% Dy Aaﬂ)

= lp(ea/% YRis KRias 6) 68’ EMw EM33 HMac’ I{AI:B, DR'b DRia’ Aaﬂ) . (53[7)

We next consider restrictions to be imposed on  in (5.2) that arise when a Cosserat surface
models a shell-like body, which, in its reference configuration, is a plate of constant thickness 4.
We choose coordinates 6* so that A; become a constant orthonormal set of vectors e;, and we
choose the reference configuration to be specified by

Dy, =0, Dyy=1, Dg;=0, Dgy,=0 (R>2). (5.4)
We also restrict further discussion to the case when only one director is present, so that

dg=0 (R>2) (5.5)
and we replace

Y1 by Yio  Kiia bY Ko (5'6)
Previously, when electromagnetic vectors were absent, we considered symmetry conditions to
be imposed on ¥ when a Cosserat surface models a plate that is either isotropic or orthotropic
(Green & Naghdi 1982) with respect to three directions e;. Here we need to consider some sym-
metry properties, which do not necessarily include material symmetry with respect to directions
normal to the middle surface of the plate. However, since electromagnetic vectors also occur in i,

we note first the restrictions to be imposed on i when the plate is orthotropic.
Suppose there is material symmetry with respect to the normal direction A; = e; to the middle
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574 A.E.GREEN AND P. M. NAGHDI

surface of the plate. Then, guided by (C13) and (C14) in Appendix C, we assume that
satisfies the conditions
case (a)

?)p(eaﬂ: “Yas V3s Kaﬂa —Kszas 0, 03; EMac: _EMaa _HMan HM3)

= ?ﬁ(eaﬂs YasV3s Ka,% K3qs 0a 03: EMas EM:-D HMaca HM3); (5.7(1)
case (b)

?)p(eaﬂa Vs V35 Kaﬁs —Kgas 0, 031 EMaw - EM:-h - HMaw HM3)
= ]ﬁ(eacﬂa Yas V35 Kaps Kaas 0, O, Ertes Egss Hypas Hyrg) . (5.75)

Asfar as material symmetriesin directions in the plane of the plate are concerned, the conditions
imposed on ¥ are independent of the particular representations used for the Cosserat surface %.
If there is material symmetry with respect to the direction e, in the plate, then we assume that
¥ satisfies the condition

'/A’(eua — €12, €39, Y3, — V1> Vs — K315 Kaa, K11, —Kuz, — Koy, Kagy 0, Oy — Engyy Enpoy Enys,
HMla _HM23 "‘HM3)

= 'p(ena €125 €225 V3> V1> V2s Ka1s Kazs K115 K2y Kaxs Kags 05 Ony Enpyy Enpo, Eprsy Hypyy, Hyyoy Hyyg).
(5.8)

If there is material symmetry with respect to the direction e, in the plate, then i is assumed to
satisfy the condition

'ﬁ(eu, — 12,839, Y3, V1> — Vas Ka1s —Kaa K115 — K2y ~ Koy, Koy 0, Ony By, — Eppa, E gy,
—HMI, HM2; - HM3)

= 'ﬁ(eu, €125 €225 V3, Y15 V2 K315 Kags K115 K1 Koy Kags 0, Ony Engyy Engoy Engsy Hypyy Hypoy Hyys).
(5.9)

Hence, if the plate is orthotropic with respect to the orthogonal directions e,, e,, €,, then con-
ditions (5.7a) or (5.75), (5.8), (5.9) must hold, in addition to (5.3a) or (5.35). In the particular
case when M has the values 0 and 1 and N = 1, and if { is restricted to be a quadratic form,
¥ must be a linear combination of the following functions:

case (a)
€515 €112, €32, €33, €11 V35 €22 V3, V3, Y1 V3o
K315 K325 K11, K11 Kag, K1a, K12 Ka1, K315 K3
€110, 550,750, k1101, K95 05, 03, 6%,
E}y, By, Efg, B, Efpy B,
H3y, Hy, His, Hiy, HYy, H,
€19 Hyg, V1 Hy, Vo Hoy, Ko Hyyy K3y Hyg,y Ko Hyg, 51 Hys. (5.10)
In the absence of the electromagnetic vectors, this agrees with the quadratic form used previously
for orthotropic plates.
One of the important applications of plate theory is for a plate made of rotated Y-cut quartz

(see Tiersten 1969, pp. 53, 162). Such a plate has trigonal-trapezohedral symmetry with x, the
trigonal axis and %3 a diagonal axis. A part of the condition of trigonal-trapezohedral symmetry
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is that there is symmetry with respect to rotation about the e, direction through an angle n. This
leads in case (a) to the following conditions:

V(€115 — €195 €22, V3> V15 — Yoo Ka1s — Ko Ki1s — Kz —Koy: Kooy 0, Oy — Enpyy Enpey — Epgs,
— Hypyy Hypoy — Hyys)
= V(€115 €12, €225 V3> V1 Yo K315 K32y K115 K125 Ka1s Kooy 0 Ons Enprs Engoy Engss Harys Hypos Hags)-
(5.11)
When M = 0,1 and N = 1, and ¥} is restricted to be a quadratic form, under the conditions
(5.3a) and (5.11), ¥ must be a linear combination of the following:
€315 €32, €32, €11 €225 €11 V3> €22 V3> V35 €11 V15 €22 V15 €12 Vo
V173 VD V3 K315 Ka1 K11> K31 K29, K325 K3p K12, Kag Koy,
K15 K11 Kooy K39y K12 Koy, K31, K32,
€110, 500,730,710, 0% k3104, k11 04, K25 0,4, 0%,
€11 Ega, €35 Bz, V3 Egas V1 Eozs €12 Eoys €12 B,
Ve Eo1, Vo Eos By, E8s, Efs, Egy Egg,
K39 By, K19 Erys Koy By Ky Egy Ky Erg, Kog By,
Kag B3, K19 B3y Koy B,
OEys, 0, Es,
ex1 Hyg, €20 Hog, V3 Hyo, V1 Hyg, €12 Hyy, €10 Hos,
Yo Hyr, Vo Hos, HYy, Hio, His, Hyy Hoyg,
E3y, Egy Eos, Egy Hyy, Egy Hyg, Efo, Egy Hygy Egs, Egg Hyyy Egg Hygy HYy, Hyy Hyg, Hy, Hs,
E3, Eyy By, Eyy Hyy Eyy Hygy By, By Higy By By Hyy, Evs Hyy, Hy, Hyy Hyg, H, H,
Kag Hyy, Kyg Hyyy Koy Hyyy Koy Hygy K1y Hyg,y Kog Hy,
Ky Hyg, k19 Hygy Koy Hy,
0H,,, 0, H,,. (5.12)

6. LINEAR THEORY OF A COSSERAT PLATE

- We consider in this section the linear theory of a magnetic, polarized, thermoelastic Cosserat
surface € for a plate of a uniform thickness 4. In its unstressed reference configuration, the plate
is at a uniform temperature & and there is no electromagnetic field present. The linearization
procedure and resulting equations are already available for a thermoelastic Cosserat plate.
Extension of this to include linearization of the electro-magnetic aspects of the theory follows
similar lines, so we omit details and only record final results.

In the thermomechanical part of the theory, we consider a Cosserat surface with a single
director d, and two temperatures & and 6,. For convenience, we adopt the notation used pre-
viously (Green & Naghdi 1979), replace 0 by 8 +6, and with (2.43) write

dy=d, 0,=4¢. (6.1)

Throughout this section, we use Cartesian tensor notation with all indices written as suffices, and
we specify the material surface and the director of € in the reference configuration by

R=x,e, D, =D=e; A, =0, A=1 (6.2)

The coordinates * are now identified with the rectangular Cartesian coordinates x,, and e, is a

constant orthonormal system of vectors. Partial differentiation with respect to x, is denoted by

41 Vol. 309. A
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576 A.E.GREEN AND P. M. NAGHDI

(), and the Cartesian summation convention is adopted for repeated suffices. All quantities in

various equations and results now refer to the reference configuration (6.2). The material surface

of % is identified with the plane mid-way between the major surfaces % = z = + %4 of the plate.
The motion of the Cosserat plate as given by (2.2) and (2.3) is now replaced by

1‘=R+u, d=D+6, u=uiei, 6=8iei, v=ﬂ, w=$, (6.3)
and linear kinematical measures calculated from (6.3) are
eaﬂ = %‘(ua, ﬂ+uﬂ, a)’ Vs = 83’ Yo = 8a+u3, a Kaﬂ = 8(1, B Kgq = 33,0;’ (64)

Within the order of approximation of the linearized theory, from §2 and equation (6.3) we have
v=gy, n=gxn, m=ym, N=zyN, M=;M, k=3k,
with similar formulae relating N* to gz N2, etc. We therefore omit the suffixes R but understand

that all response functions are defined with respect to the reference configuration. Then, from
(2.31)-(2.83), field equations of motion are

p(ii +3'%) = pf + Div, N,
(y'%4i 4+ y118) = pl — k + Div, M, (6.5)
N—-NT+K—-KT'=0 or e,xN,+te;xk=0,
where second order terms due to the electromagnetic fields are omitted and where as in (2.44) the
fields k, M, K are written for k!, M', K, respectively. Also
n=Nv=N,v,, N=N,®e, N,=N_e,
m=Mv=My, M=M,Re, M,= M,e,
k=ke, v=v,e, [f=fe, l=Ile, (6.6)
Divy N = (Ne,),, = N, . = Ny, . €;,
Div,M = (Me,),, = M, , = My, , ;.
Because of the particular choice of the material surface of € in relation to the major surfaces of
the plate we have y° = 0, and the component forms of (6.5) reduce to
pii; = pfi + Nig, o pyM8; = pl; —k; + M as Nop = Ngoy £y = Ny, (6.7)
The field equations of entropy balance that correspond to temperatures 6, ¢ are

pi = p(s+§) —Divyp, Div,p = Pa, s } (6.8)
piy = p(sy+£&1) —Divepy, Divepy = prae,
where k=p-v, _k1 =pP1v, P= P_aieaa D =P1aea>} (6.9)
q=0p, ¢ =0, r=0s, r,=0.

Turning to the electromagnetic fields, in view of linearization we have
EN = e]ﬁ\‘h HN = hlﬁ\‘h BN = bN) DN = aNa JN =j1’\kh EN =y (6’10)
and, from (3.17)-(3.20), we see that the field equations aret

el K ) D) z ED s
'BMa,a = Kg(} XMBKa—BM:}’ DMa,,a = Kgo lﬁMDKa—DM:} +EM3
. A M
By =—e,xe Ey; ,+ (EM_ 2 XIIEIEK) X e, (6.11)
K=0

= A M
=Dy =Jy-e, xeiHMi,a+(HM_ M) Wz’u{fHK) X €,
K=0

t We have written E}; for charges E, in (6.11) to avoid later confusion with components E; of electric field.
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ELECTROMAGNETIC SHELLS AND PLATES 577
where Ey = Eyie;, Hy=Hye;, Dy =Dye;, By =Bye,
Bys = [Xu(2) Balzt, Diars = [¥ra(2) Do)z, Ty = I (6.12)

EM = [xu(2) E;e]2, ﬁM = [¥u(2) He; ]2
Finally, from (4.4), the energy balance equation reduces to
. . L - . .
—p(+n0+1,6) —p{(0+6)E+PE}—P-g—P1°&: +ME—O (Epr* Iy =Dy Eyy— By Hy)
+N, 0, +k6+M,5,=0, (6.13)
where g=0,e, g =¢,e,. (6.14)

Then, for a magnetic polarized thermoelastic plate in the linearized theory, we have, either from
(6.13) and (6.7); 4 or from the results in (4.16),

Qﬁ = %(B“ﬂ, Y3 YVas Kaps Kaas 0, ¢’ EMi: HMi)a
alﬁ koc = % M3a aw

k3=pé7;: Paya: =pak_3aa
_ v 1 (L
Mep =Py Nas = Npa =20 (s;:ﬂ“‘aeﬂa)’ (6.15)
_ o _ o s oy _ A
"7——679': 771——525, DMi__'pa—_EMi> BM@'—"Pm,

_ L
—p{(0+0)E+08} —P’g—P1'g1+ME=OEM’JM = 0.

In view of the conditions (i) and (iii) in § 5, the energy function ¥ does not depend explicitly on
x, and it satisfies either the invariance condition (5.3a) or the condition (5.34). Since the plate is
at constant temperature, unstressed and without electromagnetic fields in its reference con-
figuration, ¥ is a quadratic function of the variables in (6.15),. In writing down the quadratic
for i we only satisfy the common features of the conditions (5.34, b). In each case a, b, when
treated separately, some of the coefficients will be zero. Thus

pY =34, 300560+ Auprlap¥a+ %ZaﬂYaYﬂ +3AY3+ 4,7, 7s +AapesVs
+ 3B pauKapKant BaprKapkar +3Bopksakas— 5P —FPope, ;0 —F, 7,0 —Ry;0

L
—3QP— QupkapP— Quksn P — eaﬂMZ=0 (Ci Engs + Fay Hay)

L L
—YaMZ__IO (CH Epys + F2 Hypy) —'J’aMz:‘no (CMEy, + F{Hyy,)

L _ _ L —
— Ky, E=0 (CYs Enns +F%i Hy;) _K?’“ME:() (CHEp + F 3t Hyy,)

Mo =

L _ _
+6 (RMEy; +SPHy,) +¢ X (RMEy, +SY Hy,)
M=0

0

I

M
L L
-z Z SLMNEy Enj+ MYNEy Hy; + 3NN Hyp Hy b (6.16)
All the coeflicients in (6.16) are constants and they have the following properties:
Aaﬂ)t/t = Aﬂa)t/t = Aaﬂ/u\ = AMmﬂ’ Aaﬂ)\ = Aﬂa}u
A“ﬂ = Aﬂtx’ A;ﬂ = A;ga, Baﬂ/\ﬂ = Bl/laﬂ’ Baﬂ = Bﬂa’ (6.17)
C%i = C%z‘a F%ﬁ = Fé‘a{ia Paﬂ = Pﬂa’ Lf]lN = LﬁM, NZ;{N = NﬁM.

41-2
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From (6.15) and (6.16) it follows that

L
Nop = Ny = Apppprn+dapr¥a+ Aapvs—Fop0 _leo (Ca%i Eni +F0%iHMi):\

— L
ka = A/\/mez\,u'*'AaﬂYﬂ +Aay3—Pa6_MZO (C%‘EM’5+F%HM1:)7

_ L
ky = Augeup+ A, Yo+ Ays—RO— % (CYEy + FY Hyyy),
M=0
L —
Mg = Bopruknu+ Bogakar— Qap® ‘MEO (Capi Enpi + 75 Hyyy),

L _ —
M3a = B/\/AOLK/\/L+BGﬂK3ﬂ— Qa¢—MZ—0 (C%EM'L +F0{‘7:IHM’I:))

L (6.18)
PN = Popeyp+F, v, +Ry; +PO— 3 (RYME s +SMHyy,),

M=0
PN = Qupkap+ Quksy + QP — M‘Z;() (R¥Ey, + SMHyy,),
Dy = C2f; €apt CoiYout+Clys+ 60%«& Kup+ CM kg —RMO—RY
+ M§=0 (LN Ey; + M{NH,y;),

By, = %iea/rl'Fa%Ya +FiM73+F%ikaﬁ+F%K3a_Silua—§{'n¢

L
+ X (MMEy;+ Nif¥Hy;). )
M=0

We consider constitutive equations for p, p,, £, &, J, later. The coefficients in (6.16)—(6.18)
are to be selected so that the Cosserat theory represents the main properties of a thin homo-
geneous anisotropic, thermoelastic, magnetic, polarized plate of constant thickness 4. To provide
motivation for our choice of coefficients, we compare some exact solutions of the equations of the
present section with exact solutions of the corresponding problems in the three-dimensional
theory. This enables us to express the coefficientsin (6.16)-(6.18) in terms of the three-dimensional
coeflicients given in Appendix D. Of course, these coeflicients, in their turn, must be evaluated
by suitable comparisons with experiment. This presents some difficulties in the general anisotropic
case owing to the large number of constants that describe the theory. However, in many problems
of interest, the body has material symmetries, which enable us to reduce the number of constants
to be identified.

It is clear from Appendix B that there are a number of ways in which the constitutive results
from the theory of Cosserat surfaces may be related to those that can be obtained in the context
of three-dimensional theory. Here we relate the two either by (a) polynomial and Legendre
function representations of the thermomechanical and electromagnetic three-dimensional
fields, respectively; or by (4) polynomial and harmonic function representations of these fields,
respectively. In what follows, we refer to these alternatives as cases () and (), respectively; and
corresponding to these cases we get conditions (5.3, ) when we impose condition (iii) of § 5 on
Y. Since we have restricted the thermomechanical part of the theory to one director and two
temperatures, we refer to (B 1) of Appendix B and take for
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case (a)
Al(z) =2, ﬂl(z) =2z, AN(Z) = ,LLN(Z) =0 (N> 2)’
V() = xw(e) = (N + )RR ), =22/, x5 = 0% = &)
where ¢¥ is given by (B 12) with z, = —z, = }k; and for
case (b)

/\1(2) = Z, /"l(z) =z, /\N(z) =/"N(z) =0 (N Z 2), |
Yn(2) = (2/M)isinANa(1+0)}, ol2) = i,
Kn(2) = 2/ cos@NR(1 +m)} (W= 1,2,..), u=22/h,

yE=x5=0 (K#N), yE=—xK=Nut' (K=N).

579

(6.19)

(6.20)

The method of evaluation of the coefficients in (6.16)—(6.18) follows lines similar to those used
previously for an isotropic thermoelastic plate with suitable extensions to allow for electro-
magnetic effects. We omit details and just present the final results. It is, however, of help first to
rewrite equations (6.16) and (6.18) in a partially inverted form to correspond to equations (D 4)
in Appendix D by introducing a partial Gibbs function. Considerable use is then made of the

formulae (B 2)-(B8) and (B 26)—(B 31) in Appendix B. The partial Gibbs function is

G= lﬁ‘Naﬂeap—ka’)’a—ka’J’:;—MaﬂKap—MsaKaa )
= G(Nop, ks gy My g, My, 0, b, Eny, Hyy)
and Vs = —p%kg-, Vo = —pg—,(f—, Kg = —pg%lg—, Kap = —pg%?—,
3 a 30 af
Cap = —%p(é%a—+ 5?\,&) 7= —-gg, = —-gg,
ap ONpa ¢
DMi = 'P‘é‘%a By, = —P%;-

Also,

PG = — 3455\, Ny Ny~ A2pa Nophir — 3 Adp kg~ AR — AL by by — A5 N, p g

—}P*62 — PN, ;0 — Pk, 0 — R*ky 0 — 1 Bipy, M,y M, — Bigy M,y My,

L
—3B3s My My —5Q* 9% — Q;kﬂMaﬂSb — Qi Mz, § +NaﬂMz=:0 (C:%EMi +F§% Hyy;)

r L
t+ky 3 (CoMEppy+ FiM Hyyy) + kg 3 (CFM Egyy + FFY Hyy,)
M=0

M=0

L _ _ L _ _
+Myp (Capl Eri+ F ffzz‘f Hy) + My, 3 (CoMEyy+ i Hyyy)
M=0 M=o

L L _ _
+0 3 (RIMEy;+SFMHy,) +¢ X (REMEy, + SFM Hy,)
= M=0

0

. JLE™N Eppy Eny + MEMN Eyyy Hyy + 3NN Hypy Hy b,

T

M
L

+ %
M=0

(6.21)

(6.22)


http://rsta.royalsocietypublishing.org/

a

/%

A A

A \
' e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Py
A

o \

<

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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Auprn Ay + Appr Apn+ Aop Ay = 3(04, 04 +6,,95,),
AwﬂkﬂA;k#p +Aaﬂ/1 Z:\kp +dop A7 =0, AaﬂM A:\Tt"‘AaﬂA A3 + 4z A* =0
ApaAfup+ Ap Afg + Ay A5 = 8, Ay AN+ Ay AF + A4, A% =
AR LA A+ AA* =1, Ay P+ 4,5 PF+ A, R* Py = 0,
ApyaPi + A0 PE+A,R* —P, = 0, AL, Py+A,P¥+AR* —R =0,
P—P¥*+ Py Pls+P,P¥+RR* =0, A, Ci+ A, C3M+ Ay CFM +Cly =

A CEE+ Ay CEM 1 A, CPY 4 CY = 0, Ay CHY 4+ 4,CEM + ACH +-CM = 0,

Aupru FXM+ App FEM + A p FFM + i = 0,
Apa FXH+ AP X+ A, FIM+ FY =0, A,z F3il+ A, F3M+ AF}M+ FY = 0,
RfM — RM _ P¥,CM, — PECM_R*CY, S#M = SY P, Fl,—P¥FY_R*FY,
LEMN + LYY = G O+ CEY C35 4 CRM CY 4 Capt G+ O O,
MEMN + MYN = C3IFly + CEMFY, + CFMFY + C ) Foy + CiM FL,
NEMN 4 NYN = FXMFN, 1 F3MFY, + FYMEY 4 FiM FY, 4 F3 Y,

with similar formulae in which starred and unstarred symbols are interchanged. Also,

Bigau By + Bapa Bion = $(00,85,+80,05,)s  Bapay BXup + Bapa BYp = 0,)
By BXup+ Baa BYp = 0upy Bopru @¥u+ Boupn @X — Qup = 0,

B QX+ Buin @ —Qu =0, Q—Q*+Q,,Q%+Q,0Q% =0,
Bopru CX2F+ B Ci+ Ca/n =0, By, CiM+B,Ci+ C¥ =0,
Bopru FXtE+ By FX* +Fl =0, By FXM + Boy F}M+ FIE =0,

RyM = RM — Q¥ Clb; — Q¥ Cl, SiM =SM— Qi FUb— Qs FIY, )

with similar formulae in which starred and unstarred symbols are interchanged.

(6.23)

(6.24)

We specify values for constitutive coefficients according to the two cases (6.19) and (6.20).

First, using (6.19), we have
case (a)
p=p*h, py"t =5p*R, )
Apap = k‘lsaﬂ/\/u A = 2k s, p0s |
Ap = s, p33, AL = 2054555 A* = hsgg,
Pig = 5,5 P& =255, R* =53, P*=kh*
Bigyow = 120350, Be = 24k %, 505, 71 = 120/17.

Baﬂ = 4ﬂ—lh‘3‘g¢3ﬂ3, Baﬂ)t,u. = Bﬂa/\,u = Baﬂ]u\: Baﬂ/\ = Bﬂa)u
Qs = Supp  QF = 25,3, QF =5h%*, Qup= Qpos )

(6.25)
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ELECTROMAGNETIC SHELLS AND PLATES 581
and
Capi = i kg, CX) = 2h¥kky, CF° =h 3k, )
F3: = k3, Fid =2hfy, FFo=h3,
RO = Hiy?, PO = High,
C(aﬂ)z = Cok 7%y apfis 6:1,1 = 262h_%k§3i9 C—}zﬂi = C/}aia (6'26)
F_Zg?)i = c(]).h %l o fis F:'zl = 26 It @313 F—gzﬂi = F_,l%zia
RF = WifE/8, S = g/,
LEMM = f¥,  MEMM = I,  NHMM = g,
with
Cuﬂz C:C'ilw = 03 C'L*M = O’ )
FXf—0, F¥fM =0, F¥M=0) (M=1,2,..L)

RfM =0, S} =0
C;k}zl = 0 C_';l;zlu = 09 é’:kM = 0:\ (6.27)
F¥ = FM -0, FfM=0,} (M=0,2,..,L)

RM =0, S}M=0

LEMN = MEMN = NEMN — ¢ (M # N). }

In addition, the coefficients 4,, are chosen so that the thickness shear frequencies obtained from
the two-dimensional equations agree with the corresponding ones obtained from the three-
dimensional equations. For a general anisotropic plate, it is difficult to give analytical expressions
for 4,,.

In discussing constitutive equations for the functions p, p,, £, £;, J;, by the direct theory for
case (a), we need restrictions, which arise from further thermodynamical considerations. The
constitutive coefficients in these equations are then expressed in terms of the three-dimensional
coefficientsin (D 1) with the help of results in Appendix B. Here we make direct use of (D 1), (D 2)
and Appendix B and list the final results:

case (a)
bou=—lkyp0, p— ks — 8y By, pyy = —i5h%kp b, p— (R]}) @y By,
E=0, pby=—hks,0 o—hksyp My By, Joy = h¥(1; 0, +1ig$) + bij o (6.28)
Jyg= B/ iy b o+ b Ejy s = by Enyy (M =2,3,...,L).

The foregoing results for a plate with general anisotropic properties often simplify considerably
when the material has special symmetries.

When the Cosserat plate theory is interpreted under the conditions of case (4) in (6.20), the
material coefficients listed in (6.25) still have the same values; these are the coefficients associated
with the thermomechanical part of the theory. The electromagnetic coefficients in (6.26) and
(6.27) are replaced by the following equations (6.29):


http://rsta.royalsocietypublishing.org/

A
‘/\

A

e \
A A

JA

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

 \

A
yah N

V4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

582 A.E.GREEN AND P. M. NAGHDI
case (b)
2%
Cih =0, Cify=h Wl CHM = o {i—(~1) Mk, CHE=0 (M3 1),

3
C3 =0, C3=ohtity, CHM—_2

L2 Y /z%{l (= 1)M} k), C¥M -0 (M > 1),

CF =0, € = Ik, CPM = 32p(i— (- DAk G0 (3

F:};A = }l %l ﬂ’\’ F;gﬂ:.; = 0 Faﬂ,\ - 0 Faﬂ?- Mnhé{l —I)M} “ﬂa (M > 1),
3
F:g = 2h~ %Zacszh F::? = 03 F:XM = 03 F;l:3]ll = Mgn—h'%{l_(_l)M}l;k% (M = 1)9

2%
F¥ = p-4%,, F¥* =0, FM =0, FiM= Al — (=18 (M > 1),

- ~ - 12

C::g/\ = 03 C:/[i)a = 09 C?;c%/\ = —m{l +(_ I)M}kg:ﬂ/\;

= 24 ~ ~ _
C?;%g = —W{l band ( - 1)M}/C:ﬂ3 (M 2 1), C:i) = 0, Ca3 = C%i = C%i,

24 = 48
CR' =~ gy (S Dk, OB = — g B (1= (- DMk (M > 1),
- 24
F afr = 0 Faﬂ3 = O Faﬂz = %u F&%,\ 2%/1% 2M2{1 )M} l:ﬂ/b

12
F(aﬁ)s 2%h%ﬂ {1+ —1 M} 33 (M 2 1), Fa). = 0’ F:‘:; = O,

3 48 = 24
= - oMo — 1M [*
F3y 2 M2 {1 Yy Lisns P 2%/Z%TEM{1+( NMypxs (M= 1),
3
R:O =0, R;‘O — }l%fg" R;’:M _ 2 /lf{l_ —I)M}ff, R;‘M =0 (M > 1),

SHO = phgk, S¥0 =0, S¥M =0,

3
s (1 2,

(- (=1 ff (M>1), §9=0, SP=0,

Mgy (M > 1),

R¥*=0, Rf®=0, RM=
2%h§
21'52

s 2848 ~ hE
SEM — ~ {1 (—1)M} gk, SFM= —m{1+(_1)M}g§e (M >1), LMoo,

RYM =

LY =0 (M,N=0,1,..), L =f&0,y (M,N>1), LN =0 (N=0,1,..),

5
L9 =0 (M=0,1,..), L§0=2 (- (—1s (M3 1),

s _ 2M 1—(~1)M+N
Ly A

M¥N =0 (N=0,1,...), MM =0 (M=0,1,...),

21
M = M{1—(—1)M}h;*,, (M > 1),

M —

_( — M+N
@{ﬁ—”—} %, (M+ N,MN> 1),

T M?— N?

}fa3 (M;é N:M,N> 1): L§3‘MN =f:;k38MN (M’N= 0’ 1:"‘):
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MEN — MEMO — 0 (M,N =0,1,...), M =8, (M,N>1),
Maa =}l3a8MN (M,N?O), M;‘gI‘IO:O (M=O,1,...),
2%
MEMM =0 (M=0,1,..), M2V — N{l—(—l)N}k§‘3 (N> 1),
—( —1\M+N
%N{Lﬁ(f:ﬂ—}h (M#N>M7N> 1)’ N*MN—g;‘ﬂé\MN (M,N=Oa 1:"'):

N =0 (M=0,1,..), N¥M =0 (M=0,1,...),

*MN _
ME =

Ny = 2o (coMgs (Vs ),

(- 1YM+N
gy = S (% MM N > 1),
N§<3M0 = O’ N*ON =0 (M, N = O, la )3 N§3MN = gf;k3 8ILIN (Ma N 2 1)’ (6’29)

7. PARTIALLY RESTRICTED THEORY OF A COSSERAT SURFACE

For many purposes it is useful to develop a restricted (or a constrained) theory of a Cosserat
surface, which results in somewhat simpler field equations as far as the mechanical variables are
concerned. In such a theory the director d = d, at each point of the surface is constrained so that
its component along the normal Aj; to the material surface of € in the reference configuration is
always constant and dy = 0 for N > 2. We omit details of such a partially restricted theory for
the general nonlinear case but only quote results for the linear elastic Cosserat plate as a restricted
case of the results of § 6. Thus we have

03 =0, Kk3y=103,=0
and kj, M,, become arbitrary functions of 6%, ¢, not determined by constitutive equations.
Instead of (6.15) we now obtain
5 o

Iﬂ = %(eaﬂ’ Yo Kaps 0, ¢, EMiy HMﬂi), ka = p'é—"' aKaﬂ

b Md
Ya p=p

N,y = (a& agﬁ) o o Dy = K2 B, o

Sy Beg = = TPRE TP,y

(7.1)

"="39> = T
with corresponding equations of motion
Py = pfi+ Ny, 0s  Noyg = Ny, P.’/ugﬂ =plg—ks+ My, o, ky =Ny My,  +pls—Fks=0.
(7.2)
We take /; = 0 and adopt the special solution A, = 0, k3 = 0 throughout this paper. The entropy

balance and electromagnetic equations are the same as in (6.8)—(6.12). The expression for ¥ in
(6.16) is replaced byt

P‘ﬁ = %Aaﬂhﬂeaﬂeh,u'l_Aaﬂ/\eaﬂY/\+%Zaﬂ7/aYﬂ+%Baﬂ/\.u’<azﬂ’</\,u_%P0 Pﬂe /90 Pa Yae

L L
—3Q0%—QupKap® _eaﬂMZZO(C%i Ey; +F%i Hyp) Ve X (CH Eyp+ F2F Hyy)

L _ Lo L L — _
—Kap EO(C%iEMi+F%iHMi) +0MZ_‘40(R£IEM1:+S@MHM1') +¢M§_:0 (RV E gy + SV Hyy,)

~

L .
-3 ¥ BLYVEy, Eyi+ MYNE,,, Hy;+ %Ni?NHMz- HNj)' (7.3)

M=0N=0

1 To avoid notational difficulties, the same symbols are used here as in § 6 but they now have different values.
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584 A.E.GREEN AND P. M. NAGHDI

The constant coefficients in (7.3) have the symmetries recorded in (6.17). From (7.2) and (7.3)
it follows that

Nop =Ny = Aaﬂuem+AaﬂA7A“Paﬂ9—M§=:0 (Coi Eypi+ Flhi Hyp),
ky, = A,\”ae,\/‘+gaﬂ’)/ﬂ——Pa0—M§ (CHE,;+FY¥ Hy,),

M,p = Bopkau— QupP— 2 ( aﬂzEMz+Faﬂz Hy;),
Py = Pyesy+ P, 7a+P0—M§i0(R{~”EM,-+S§”HMi), (7.4)

L — _
N1 = Qupkap+@P— 2 (R¥ Eppi+ SY Hyy,),

—Caﬂ':, ,5’+Ca1,7a+Caﬂ1, af RMB R'LM¢+ E (L%NENj'*'M%NHNj)a

~

By = FY, a/g+mea+Fam Kog— ST 0 —SMp + Z (MNME,V,+N N Hy;)s

with partially inverse relations

G= G(Na,b” kw aps 0 ¢a EMv HMz)a

oG oG oG oG
7a=_péz;a Kaﬂ=_paMaﬂ’ Cup ?p aNﬂ aNﬂa
6w aéB__aa
U 6’ = a¢’ Mi = paEMz Mi — paHMz
where
PG = =343 Nop Ny, — Aipa NaﬂkA‘%Zi‘ﬂkakﬂ"lB:ﬂMM s My —%
—PlgN,,0—P5 k,0—-3Q%d*— QipM,56+ N, af 2 Z ( Cagt Eps+ Fi31 Hypy)
+kq Zo(CazMEMz + I3 HMz)"'Maﬂ Z (Caﬂz EMz"'Faﬂz Hy;)
M
L — —
+0 3 (RFMEy +SF"Hy,) + ¢ Z (REM B+ SEM Hy,)
M=0 M=0
L L
+ 2 EO(ILH EM’LEN] +M{§ NEMz HN;i+1N HMzHNy) (7'5)
M=0N=
and ~
Aaﬂ/\,uA/\/tpV +Aaﬂ/\ ApM = 2( 3,9,,4-80“, 3/5’;))3 Aaﬂ/\/tA:I\:/tp +Aaﬂ/\ Afp = O )

A/\/mA/\/tﬂ'l'Aa/\ A¥p = 0upy Aupry PRu+Aupa PX —Fop =0, Apua PXs + A, \P¥—P, =0,
P—P*+P,Pis+P, Py =0, Adﬂ,\ﬂC,\m + A2 CXf M+Cli =0,
Apuu O+ Ap CF+CH =0, Ay, FH +Aupn F *M+F%i =0,
AA,uaFA/n + A, FM+F¥ =0, RM =RM—P}CY,—P¥CY,
SEM = M _ Pl Fl — P} FY  LY¥MN 4 [UN = C(,;ﬂz C C:‘iMCz Caﬂ, C%i,
MFMN 4 MYN = Co;/g1 i +CHMFY, + C",‘ﬂ1 FY,
NEMN . NMN = P FN,  FXMEY, + F5M BN, }

(7.6)
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with similar formulae in which starred and unstarred symbols are interchanged. Also
Bopay Bl = §(00 0p, + 00 0,)s Bapr, Q¥ — Qap = 0,
Q—-0Q*+Q,;Qi5 =0, Baﬂ}t/t i Ca/h =0, B ) 3v +Faﬂz =0, (7.7)
RPM = RV — Qs Cofs,  STM = S} — Qs Fii,

with similar formulae in which starred and unstarred symbols are interchanged.

Values of the coefficients in (7.3) may be found in terms of the three-dimensional coefficients
by a procedure similar to that used in § 6. This leads to the values listed in (6.25)-(6.27) for
case (@) and in (6.25) and (6.29) for case (b), for the relevant coefficients. Because equations (7.6),
(7.7) are different from (6.23), (6.24), which connect the unstarred and starred coefficients,
different values are found for the coefficients in (7.3) from those in (6.16). The equations for
evaluating 4, are slightly simpler here than those in § 6. The thickness shear frequencies ® in
the present two-dimensional theory are given by the equation

det (&p*hw?,,— 4,5) = 0. (7.8)
These frequencies are to be equated to the two lowest roots of the frequency equation
det (p*n*2k2w23ﬁ - €i3j3) = O. (7.9)

Mindlin (1961) has used the same comparison as a basis for finding correction factors, which he
inserts into his theory. As an illustration he considers the case when there is symmetry under
rotation about the e,-direction through an angle n. Then, recalling (D7) in Appendix D, from

(7.8) and (7.9) we obtain B B
Ay = 0, Apy = F5m2he
12 22 = 13T Nla303, ] (7.10)
Ay; = J4m2h[1315 + Casss — {(€3333 — C1318) + 4e3aga}t] J

The constitutive equations for p,, 1., &, &, Jy; are still given by (6.28) for case (a).

8. A RESTRICTED THEORY OF SHELLS

In application of the thermomechanical theory of shells, it is often sufficient to use a restricted
theory in which a director either is not admitted or is assumed to be coincident with the outward
unit normal a;. A direct thermomechanical theory of this kind (corresponding to the classical
Kirchhoff-Love theory of shells) has been constructed by Naghdi (1972, §§ 10, 15), who also
refers to previous approximate nonlinear theories of this type developed by approximations from
the three-dimensional equations. Here, we follow the procedure of Naghdi (1972) but include
electromagnetic effects and allow also for temperature variation across the shell thickness. We
begin with the kinematical results in (B 18), namely

F=ai®Ai, a,L=FA,L, L=di®ai, di=Lai,1

_ (8.1)
K=-a;,00*=b,a*Qd, J
where K is the curvature tensor with components b, ,. From (8.1) we write
L=D+W, D=D"=d}a"Q@a’, df=0, 2djs=dy,
W' =W=ufaQa, Wu=oxu, a;=La;=Wa, (8.2)

N o
why = —wk = — (v3,, +08vy), 2wks =vy5—0vp,, wWH=0, v=uva,
B £ YA

where (8.2) holds for every vector # and o is an axial vector.
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586 A.E.GREEN AND P. M. NAGHDI

The conservation laws for mass, momentum and moment of momentum are now given by
see also Naghdi 1972, §10):
( ghdi 1972, a‘_i_tf pdo =0, (8.3)
2

(%f@(rxv+yn@)pd0' =Jg{r>< (f+fe) +i+ie+ce}pdo+fw(rxn+1ﬁ) ds, (8.5)

where 1 is the edge couple and

M=a,xm, @=a;x(0xa,)=0wa, w=wiai,} 5.0
14T, = ax (1+1), ¢, =, *

Field equations that correspond to (8.3) to (8.5) are
p+pdiv,o =0 or pat =ppdl,
pi’ = p(f"'fe) +divs N, N (8‘7)
pyte = p(l+1,) +pc. +a, x No +div, M,

where
A

= My = ﬁava, M= Iﬁ“@aa, Me = a3 x M* = MPa, x a,,
n=Nv=Nw, N=N:®a, N*=Nieg, }

The entropy balance equations are the same as (2.23) and (2.24) but the energy equation is now
d

K -
= (e+%v-v+%y“¢3-6:)pdo'=f {r+ > rN+(f+fe)-v+(l+le)'w+w}pdo-
ds P 4 N=1

(8.8)

N K
+j (n'v+m-a)—h— py hN) ds. (8.9)
oz N=1
With the help of (8.7), the corresponding field equation reduces to

K K
p(r+ > rN)—divs(0p+ > 0NpN) —pé+pw—pce-w+P=O,}
N=1 N=1

(8.10)
P=Nt-(d,—oxa,)+ Mo, = }(N*+ 5 M) 4,5~ M55,
M = .
where piT—pey® = Pot 3 (Ex T+ EgDyc + Hy By) (4b/ab),
K=0
(8.11)

P, = Ni-(4,~0xa,) + M0, = h(NF+ 5] M2) 4y~ MZD,
pCe = @, x Ni +ay , x My +agx k.
With the help of (2.23) and (8.10) we obtain an energy identity of the form (2.25) but withP,FP,
now given by (8.10) and (8.11).
Discussion of a magnetic thermoelastic shell now follows as in §4 except that the kinematic

variables in (4.13) are replaced by a, a,,. (8.12)

With invariance under a constant rigid body rotation taken into account, we then have

% = ¢5(aaﬂ’ b_a/b 0, ON’ EM> HM: Aaw Ba H @; 0”)' (8'13)
Expressions for the entropies and the electromagnetic vectors are of the same form as those in
(4.16), but (4.16), , 3 4 are replaced by

0 0
Npa 4 NE= 4+ B (M + M) + Nob + NoF + b5 (M + M2) = 2p (52—% +5}zﬁi) ’
af The 8.14
s, 9s) (8.14)

0b,s  Obg,)"

MeF + M2 + Mb=+ ME* = —p(
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In addition, taking the scalar product of each side of (8.7); with a; yields

Nie o NG* + BA(M + M) = Ne# + No + b3 (MPA + MEY). (8.15)
"To complete the constitutive equations, we set
MeF 4 M*P = MPb 4 MEe, (8.16)

In parallel with §6 we limit further discussion to the linear theory of a plate of constant
thickness, unstressed, at uniform temperature 8 and without electromagnetic fields in its reference
configuration. The middle plane and its motion are specified by

R=x,e, r=R+u, u=uye, v=1u, 0*=x, (8.17)
Linear kinematic measures are
Cup = %(ua,ﬂ+uﬂ, a)> Kup = — Uz, ap5 (8'18)

where k4 is the curvature of the deformed surface. All response functions are now referred to the

reference body with

A A " =ANv B A/,\a Yo A V= Na ®Ae“’ N“ - ]Vi“ei’ ]' (8.19)
m=Mv=My, M=M,Qe, M,=exM, = Mﬂaeaxeﬂ.J

Component forms of the equations of motion (8.7) reduce to
pdi = p‘f; +Afi“’ @ Naﬂ = Nﬂa) —pylllzg’ a = pla +Maﬂ,ﬂ —N3a, Ma = Mﬂa’ (8.20)

where p is reference density.
We now restrict attention to the geometric symmetry condition (5.34) or (5.3b) and, instead
of (6.16), for the Helmholtz free energy response functions write

P%# = %Aaﬂ)t,ueaﬂe/\,u + %Baﬂ)mkaﬂ Kxu '—%sz - Paﬁeaﬁa - EI?Q¢2 - Qaﬂkaﬂ¢

L L _
- eaﬂMZ_ (Cabi Engi + F i Hy;) —Kop ME—O (Coi Engs + Fifi Hyyy)

(1]

L L _
+0 ¥ (RVEy;+SYHy)+¢ X (RYEy+SY Hyy)
- M=0

0

M

M
r
- X

220w (ALYNEyy; Ey;+ MY Epyy Hy; + 3 NJN Hyyy Hyj). (8.21)

With the help of (8.21) and the linearized forms of (8.14), we obtain the constitutive relations

L
Naﬂ = Nﬂa = Aaﬂaﬂeaﬂ—Pdﬂe—ME_O (C%iEMi-l_F%iHM’i))

L - =
Maﬂ = Mﬂa = aﬂApKAp— Qaﬂ¢_‘ME=0 (Ca%iEMi'i'F%i HMi))

L
P = Pogeag+P0— 3 (RY Eyy+ 8 Hyy),

M=0

L — _
Pl = QaﬂKap+Q¢—M§_J_O(RquMi'f'Sf”HMi),

— _ L
Dy = Clhsenp+ Capikap— RYO— RV G+ NE_JO (LN Ey; + MYN Hy),

(8.22)

— — L
By = Flpiup+ Fahikos— S0 —SY ¢ +N§0 (MM Ey;+ NIN Hy;),
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with partially inverse relations
G= G<Na 5 Maﬂ: 0, ¢: Ey, HMi):

¢ __;,,(_iﬁ_G_JriG_) p .__.1_,,(_6_@_+_8_G_)
£ = 2NN, 0N, )0 T \oM,, T 0My,)’

oG oG 5 oG oG

1=-3g> M= _6715’ Dy = —pé—EJ,Z-’ By = —Pm:
where
pG = —%Azﬂ/\/&NaﬂN/\/L_%B;kﬂ/\ﬂMaﬂMz\/z—'%P*ez P Naﬂ0 Q*¢2_Q:ﬂMaﬂ
L L _ _
+N,p ME_O (CH Eppy + F;k/%HMi) +MaﬂM2_0 (Cf,f%EMi + Ffﬁn{"HM«;)
L L _
Y (RIMEy; +STMHy,) +¢ 3 (REMEy; + SEY Hy)
M=0 M=0
L L
+ MZ_ONEO (ALEMN Eppy Enj+ MEMN Eyyy Hy; + 3 N 5MN Hyy Hy ;) (8.23)
and

Aupru Aoy = Bapry Blupr = $(82p0p, + 04, 84,),
Aupry PYu =Py =0, P—P*+P Pl =0,
B.sau Q% — Qup=0, Q—Q*+Q Qis = 0,
Aaﬂhpcfézl'l'I'C%i =0, Aaﬂ/\,uF/\,lt’L +F¥%; =0,
R¥M = RM—PYCYy, SFY =S¥ -P, ﬂFaﬂl,

By, O+ Cly =0, Bop FXM+Flfy =
RiM = RM — Q¥ Copi, SiM = SM—Qiﬂ _%i,
LN +LMN C“ﬂ@ Caﬂ: aﬂz Ca/m
MEMN 4 MUN = CEM FY,; + C3F B,
NEMN 4 NYUN = FEMFY + FE FY.

(8.24)

There are also similar formulae in which starred and unstarred symbols are interchanged.
Values of the coefficients in (8.23) are the same as those listed in (6.25)-(6.27) for case (a) and
in (6.25) and (6.29) for case (b), for the relevant coefficients.
The constitutive equations for p,, py,, &, £, Jyy; are still given by (6.28) for case (a).

9. MEMBRANE THEORY

For some purposes, the mechanical properties of a shell can be examined by using only the
membrane theory, but it is desirable to keep enough generality in the thermal and electro-
magnetic part of the theory to allow for effects of these, both along and across the material
surface of the membrane. The nonlinear membrane theory can be obtained as a special case of
the theory in §§ 2-4 merely by suppressing the director and the associated response functions,
but itis convenient to list here the main results for a magnetic, polarized thermoelastic membrane.

From (2.14), (2.16), (2.31) and (2.33), the spatial and material forms of the equations of
motion are given respectively by

p0 = p(f+f.) +divyN, pl[,+N—NT =0 or pc,+a,x N*=0, (9.1)
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ELECTROMAGNETIC SHELLS AND PLATES 589
and
pr? = pr(f+fe) +DivygN, prle+rNFT—FyxNT =0 or ppc.+a,xygN*=0, (9.2)
where n=Nv=Nw, N=N:®a, N=*=Nig, ‘l

(9.3)

gt =g Npv =gNogr,, gRN=xN*®A4,, zN*= RNwAi'J

The entropy balance equations are still given by (2.23) or by their corresponding material forms.

The electromagnetic field equations are either (3.7)—(3.10) or, in material form, (3.17)-(3.20).

From (4.12) and (4.15), the constitutive equations in terms of the Helmholtz free energy
function reduce to

11’ = ¢3(Fa 0’ GN’ EM: HM)a

0
_z_#_:; = % RN+RN ¢3
N

T="%6> ™= T30, = PrBp (9.4)
D. — _ 63&3 _ 6303 a¢3 _
Dy = PRE,,’ BM——PRm, =0 F=4a,04,
or V= Y5(aups 0, Ons Engss Hyi), \
Moo N2 = p (S8 4 S8) — (dbah) (Ve 4 V) Ay,
a i dﬂ

9.5
(ah/ ) (N3 + N2) = (1N 4 NE%) A, 03 = 0, (82)

s s 5 s ; 0y

T="29" 77N=‘a—0;a u = pRaEM By pRaHMz

Linearized membrane theory follows in a usual way. Let © denote the displacement vector of
the material surface & of the membrane. Then,

u=uyA =uA;, e,5=13uyptug,) - 3“3, (9.6)

where ¢, is the surface strain, a vertical line stands for covariant differentiation with respect to

the metric tensor of the surface & in the reference configuration, and B, is the curvature tensor

of & in the reference configuration. As in § 6, we omit all suffices R and refer all quantities to the

reference surface, which we assume to be unstressed, at constant temperature & and without

electromagnetic fields. Then, the component form of the equations of motion (9.1) when N* are

referred to the basis A; in the reference configuration is:
Neb g+ pf* = pii*, N*# = Nb=, B, ,N*/+pf3=pi®, N*>=0, f=fiA;=f A% (9.7)

and the entropy balance equations are
pi =P +E) ~Fe P =P A =P A k=pr, |
Pix = Py +EN) ~ Pl Py = 1540 = bya A%y = piiva)
where p is reference density and v = v, A* = v*A,, is the outward unit normal to any closed curve

in the reference surface. If the reference surface is one of constant thickness , we choose D; = Aj,
Dy=0(N> ) in (B 1) so that the electromagnetic field equations in (3.17)—(8.20) are

By, = Kz;. 0 Be=Dn(@) By, Die = Kgowﬁﬁ%—[m(@ Do+ By,

(9.8)

. . M
Bl =By Biu=—ct{Eyo p+ 3 i Erp—Dtul2) B ), (9.9)

—534 = J?u—e"‘ﬂHWﬂ @ _DM =Jy—e {HM:a st Z ¢JI§HKﬂ [V u(2) Hﬂ]% ih}
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590 A.E.GREEN AND P. M. NAGHDI

where €*# is now the alternating tensor of the reference surface. In writing the surface terms [ ]%_"% n
on the right-hand sides of (9.9) we have used the approximation #/R < 1, where % denotes the
thickness of the membrane and R is smallest radius of the curvature at any point of the material
surface <.

Restricting attention to the conditions (5.34) or (5.35), which arise from geometrical symmetry
conditions in the shell-like body, and assuming a quadratic expression for the Helmholtz energy
response function, we have

L
pY = 34 e g0y, —3PO* — P*le,p0 - 1 Q2 ~lp X (CMPE py; + M Hyy)

L = e
+0 Y (RMEy, +SYMiHy ) +¢ 3 (RMEy, +SMiH,y,)
M=0

0

b ﬁMh

L
Y (FLMNTEy,; Ey; + MMNGEy, Hy; + NYNGHy, Hyj). (9.10)
M=0N=0

Latin lower case indices are raised or lowered with the help of the metric tensors 4;;, AY, where
Ay =0, A3 =0, Ay =A%=1. (9.11)
From (9.5) and (9.10) we have

L
Neb = Nbe = Aaﬂ/\ﬂe/\lu_ PG — Y, (CMaﬂi Ey + JMapi Hyp), )
M=0

L
py = Phe,,+PO— 3 (RMEy, +SMHy,),
M=0
L = 3 el .
Py = Q¢ “‘ME=0 (RMEy; + Y ), (9.12)

= = L oy
Diy = CMapie,, — RMif — RMigy 1 3, (LMNGEy, + MMNGH, ),
N=0

. = L . .
Biy = FMafie, ,— SMig . SMigh 4 VE_ . (MANMIEy, + NMNG] ).

Partially inverse relations with respect to e,,, N*/ are:

G = G(N“4, 0,8, Eyi, Hypy),
_ (3G G __ % %G
s = 2P \gNar Tonm) 1T "3g0 T T (9.13)
—, oG . oG
Dy = —prz—, By=-psz—,
M= Py M T TP,

where
L
pG = — 3 A%, NP Nk —LP*02 — Py N*PO — LQ* % + N“ﬂME_O (C;‘}“Em + F;’:}“Hm)

L Lo _
+0 X (R*MEy, +S*MiHy ) +¢ ¥ (R*MEy,; +S*MHy,)
0

M=0

M

(FL*MNGE s Eyj+ MMNGEy; Hy; + NMNGH ) Hyj) (9.14)

M=
L
+ X
M=0N=0
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and A A/\MW =1 82 3ﬂ +62 3/9)

A*Prepl, — P =0, P—P*++P*¥Pl; =0, Q= Q%
Aaﬁ’/\ﬂcf}li +CMapi — (),  Axbre Fj{‘,fm + FMapi —
R*Mi — RMi_ P¥,CMapi  §¥Mi — §Mi_ P, FMapi, (9.15)

R*Mi — RMi  §#Mi _ §Mi

L*MNij 4 [ MNij — C;k}licNaﬂj’

M*MNij | \fMNij — Cfém FNapi

N#*MNij | NMNij _ F;%émFNaﬂi_

Values of the coefficients in (9.15) are the same as those listed in (6.25)—(6.27) for case () and in
(6.25) to (6.29) for case (b), provided that in these formulae and in the relations (D 5) C¥J/, F¥ ﬁz ,
REM, SFM REM SEM| [EMN MEMN ko g, [T, &F, fi5, g% are replaced, respectively, by CJ1%,
F*Mi R*Mi §%Mi R*Mi, S‘*Mi, L*MNij Nf*MNij N*MNij k*aﬂi) l*aﬂiﬂ f*i, g*i, f*i;r’, g*w Also,
the terms ¢;;,,, ¢y, --- in (D 5) are replaced by ¢¥s, ¢%, ... in (D 8).

The corresponding constitutive equations in case (a) for p2, 4%, £, &, J¢, Ji, Ji; from (D 9) are:

p* = —hk*P0 5 — hk*3¢p — a*hiE,,,

P = — 15k, p— (2] }) Ay,
£=0, p& =—hk¥0 ,—hk¥3¢ —htadE,y,

Jo B (1120, +13¢) + bV E,,,
= (ht/&) liegp , +HYE,;,
J}'n =bIEy;, (M=23,..L).

(9.16)

10. THERMOMECHANICAL AND ELECTROMAGNETIC EFFECTS
IN A NON-CONDUCTING PLATE

The various linear theories of plates discussed in §§ 6-8 include both thermal and electro-
magnetic effects, but differ from one another only to the extent in which the effect of transverse
deformations, i.e. (i) the transverse shear deformation and (ii) the transverse normal strain
(through appropriate kinematical variables) are accounted for. The effects of both (i) and (ii)
are included in the theory of § 6; both effects are suppressed in the restricted theory of § 8; and
only the effect of (i) is retained in the partially restricted theory of § 7. As one example we consider
a non-conducting plate in free space and in the absence of the effects of body force and applied
traction on the major surfaces z = + 4/, which are also heat insulated. We use here the theory of
§ 7, but similar analyses can be made from the theories of §§ 6 and 8. For the electromagnetic part
of the theory, we select the representation corresponding to case (a) in (6.19) and restrict the
electromagnetic variables to E,, E,, H,, H,, D, D, B,, B,. It follows that for the example under

discussion s=0, 5,=0, f;=0, l,=0, Jyy=0, Ef=0. (10.1)

With the help of (6.28), the equations of motion (7.2) and entropy balance equations (6.8) for
case (a) reduce to

puz = Aria, a’ pyllga = —'ka +Maﬂ,ﬁ9 ka = N3a’ p= p*h’ yll = 'ilfhz’ (10'2)
pﬂ = hkaﬂe,aﬂ +kka3¢,a +h%ﬁaiE0i, s } (10 3)
pﬁl == hk&z 0, @ hk33¢ - h%ﬁ?n’EOi +T1§k3kaﬂ ¢, af + (ké/col) Aoy Eli, s = 2 3tpt .

42 Vol. 309. A .


http://rsta.royalsocietypublishing.org/

o \

p &

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

a

”/\\ \\
A \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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The relevant electromagnetic field equations in (6.11) are

Dy = eaﬂHoﬂ,w Dy, = eaﬁH03,ﬂ_€aﬂH0 s

Boa = _eaﬂEO ) s BOa = _eaﬂE03,ﬁ+€aﬂE0ﬂ’ (10.4)
D_Oa,a = _Doa, BOa,a = —éoaa
f)w = €5 Hip, 05 f)m = eaﬂH13,ﬁ+cgea/}H0ﬁ'_eaﬂﬁlﬂy
Bl3 = —eaﬂElﬁ',w Bm = '—eaﬂEl& p“?eapEO/f'*‘eaﬁEm, (10.5)
Dla,a = ¢ Dos_Dm, B o= ‘9303—313,

A

where €, is the alternating tensor with values 0, +1, and Dy, Dy, By, By, By, By ﬁ()w H,,
are given by (6.12) and (6.19).
The constitutive equations that are used with equations (10.2)-(10.5) are obtained from
(7.4), (6.25)—(6.27) and (7.6), (7.7). These are
Naﬂ = Aaﬁ)\pe}m + Aaﬂ/\ Ya— Paﬂ0 - Cgﬁ"iEOi - Fgﬂi HO'L"
ka = Az\/me)t,u'i' Zaﬂ')/ﬁ - Pae - Cg‘iEOi _FaoiHOi)
Maﬂ = Baﬂ/\/t K™ Qaﬂ¢ - Ci/n'En - Faﬂi Hy,
PN = Lypyp +Pa7/a +PY —R?Eoi - S?;Hoia
PN = Qaﬂ Kapt+ Q¢ - R% El'L‘ - S%Hliy
Dy; = Clyi Cap+Coive—RYO+ LY Ey; + MY Hy,
By, = Fg/i’ieaﬁ +FDiv,— S0+ M%Eoi + N%)'Hoj’
Dy; = Cops Kap— RY ¢+ L Ey;+ MY Hy,
By = —gzﬂikaﬂ_ Sto +MRE;+ N Hyj,

Cup = %(ua,ﬂ'i'uﬂ,a)’ Yo = 0 Uy o Kyp = 6oz,ﬂ'

(10.6)

Discussion of the propagation of plane waves is now a straightforward but algebraically lengthy
procedure. It is also necessary to consider electromagnetic wave propagation in the free space
surrounding the plate and to use appropriate conditions for the electromagnetic vectors at the
surfaces z = + 1. These conditions would involve continuity of the components E,, H,, D;, B,
of the three-dimensional vectors at z = + 3. We do not embark on a general discussion here
but note a slightly simpler situation in which the moduli for the plate are much greater than the
moduli for free space so that we may adopt the approximate surface conditions

Dy=0, B;=0 (z=+1%h), (10.7)
and hence Dyp=0, D=0 Byy=0, B,y=0. (10.8)

In view of the representation under case (a) in (6.19) and the use only of the vectors Do, Dy, B, B,
for the plate, from (10.7) we have

Dyg=0, Dy=0, By=0, Bj;=0. (10.9)

Also, it follows from (10.7) that the surface values of E,, H, satisfy the equations

eaﬂEa,ﬂ = O, GaﬂHa’ﬂ = O (Z = i %k) (10.10)
SO that eaﬂan,ﬂ = O, eaﬂEIa,ﬁ = 0, eaﬂHOa,ﬂ = 0’ Eaﬂﬁla’ﬂ = O. (10.11)


http://rsta.royalsocietypublishing.org/

JA

/ y

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s
N\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ELECTROMAGNETIC SHELLS AND PLATES 593

Further, from (10.4), 5, (10.5); 3 and (10.9), it is seen that
Eoo=—Xo,w Eia=—X100 Hoa=—V0,00 Hia=-V10 (10.12)

where x,, X1, ¥, ¥, are scalar functions of x,, £. The system of equations (10.4) and (10.5) may
now be replaced by equation (10.9), (10.11), (10.12), together with
EOa, a

and Em = Hoa,z“Hoza By =~ 03,2+E02; 1
D, = Hys o+ Hyy—Hyp, By = —Ej3,—0} E02+E12-J

=0, By ,=0, Dy,,=0, B,,=0, (10.13)
(10.14)

The basic differential equations for the plate now separate into two groups: The first group
consists of fifteen equations, (10.2), (10.3), (10.6), (10.9), (10.12) and (10.13), for the fifteen
variables u,, ug, 84, 6, @, Xo, X1> Vo» V15 Eog, Ey3, Hyg, Hyg, while the second group consists of eight
equations, (10.11) and (10.14), for the remaining variables £,,, HO“, k., H We leave aside
detailed consideration of wave propagation and other special problems.

11. PIEZOELECTRIC GRYSTAL PLATES

Isothermal vibrations of piezoelectric crystal plates due to given applied surface potentials
may be studied as a special case of the theory of the previous sections. Here we limit our attention
to the partially restricted theory of § 7 in which thermal variables are omitted, and the only
relevant mechanical equations of motion are given by (7.2). In piezoelectric theory, the magnetic
fields Hy; are absent from all constitutive equations so that B,,; = 0. We limit the remaining
electromagnetic variables to E,;, E\;, Dy;, D,;, Ey3, Dys corresponding to the representation under
case (a). Constitutive relations under case (@) are then given by (7.4), 5 3 ¢, in wWhich the coef-
ficients are given by (7.6), (7.7), (6.25), (6.26) and (6.27). In these equations, the terms involving
the temperatures 6, ¢, the magnetic terms Hy,; and the electric terms Eyy, Eyp, Eyp (M = 3,4, ...),
as well as their corresponding coeflicients, are omitted. Thus,

Naﬂ = Aaﬂ/\,u e)t,u + Aaﬂ)t Ya— Cgﬂi EMi’ ka = A/\/me/\,u + Zaﬂ’y’? - Ca(z)i EM’L”
Ma,b’ = Baﬂ/\[t Kyp— C }cﬂi Ey, Eoi = Cg/z’i Cupt Coi Vo + LY E;, (11.1)
D,; = C—’}cﬂi Kaﬂ+L?141' E;, Dy = L E,,.

By (6.11), (6.12) and (6.19), the appropriate electromagnetic field equations in this case are:

Dy, = — [ Dy,
" (11.2)
Dm a= Cl{Doa‘h %[ZDs] 1)
eaﬂEO,b’,a =0, eaﬂElﬂ,a = 0,
E a = h3E b 5
05, 2 ] i (11.3)
Eys, o = YW H2E, ) — Eool,
E a = 5%{}! %[Ea]é —() a}} |
where ¢} = 2.3%/h. > o
From (11.3), , it follows that
EOa = —Xo, » Eloc ==Xy, (11'4)

42-2
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594 A.E.GREEN AND P. M. NAGHDI
where y,, x; are two-dimensional potential functions, and from (11.3), 4 5 we have
(B = = Po0r [2E M = =Py 0
Eyy = —hi®,, E5=c(x,—h D), (11.5)
E,y = 55, —h D),

where @, @, are related to the applied voltages over the major surfaces z = + 14 of the plate,
which are coated with electrodes. Within the framework of the present theory we may use the

representation _ _ _ _
Dy = h™¥{Dyg +e§2Dy5+354(122%/h* — 1) Dyy)} (11.6)
so that in (11.2) we use
[Da]%—h%h = h4§ Dy, [zli;]i’;h = h¥( Dy + 54 Dy). (11.7)
Also, at the surface z = — 14,
Dyy_yn = h~3( Doy —he Dy + 54 Dyy). (11.8)

The equations obtained here for piezoelectric plates are somewhat similar to those used by
Tiersten & Mindlin (1962) and Tiersten (1969), although the basis of the present theory is quite
different. These authors derived their equations from the three-dimensional equations of linear
piezoelasticity with the help of expansion methods due to Cauchy and Poisson and the variational
method of Kirchhof, together with the introduction of correction factors involving the thickness-
shear strains. We refer readers to these authors for a variety of applications to particular problems.

12, ALTERNATIVE REPRESENTATION FOR PLATE THEORY

For some types of plate problems, depending on the nature of the surface conditions on the
faces z = + }h, it is more appropriate to regard the response characterization of the medium in
the context of the symmetry restrictions discussed under case () in (6.20). Again, we use the
partially restricted theory of § 7 in the absence of body forces and also omit temperature effects.
Assuming that the major surfaces of the plate are free from applied stresses, from (7.2) we have
equations of motion

Plly = Nigas pY*0, = =kt Mg gy ky = Noy, p =p*h, y' =0 (12.1)
For electromagnetic fields we consider only
Eys, E\;, Hy,, Hys, Boys Byss Dys, Dy, (12.2)
which, from (6.11) and (6.12), satisfy, in case (b), electromagnetic equations

B = —Bos> Biyou=— (n/h) B13_Bl37 Dla,a = (n/h) D13?

Oa, a
By, = —eaﬂE03,ﬁ+€aﬂE0/9’ By = ~€“’9E1’9’ »
By = —€upEs 5+ (n/h) €upErg +€°‘ﬂE1/9’ (12.3)

Dy, = GaﬂHO,B, w Diz= eaﬂHIﬂ, as

Dla = €up Hls,,ﬁ + (TC/}l) €up IJ]/S’,
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ELECTROMAGNETIC SHELLS AND PLATES 595
where By = k=4[ By]¥%,,  Big = — (2/h)}[Bysin nz/h]%_’;h,} (12.0
Eop = IV Egy, By = —(2/h)[Egsinnz/h]H,,.

In the light of the values in (6.29) for case (b), (7.6) and (7.7), from (7.4) the appropriate consti-
tutive equations are

Nog = Aoprpern+Aupr Y2~ Cops Eoz — Copr Eyy — Fgy Hyp — Fops Hi,

ky = Aynrut Zaﬂ Yo Cos Egg — Con Exy — Fo) Hyy — Flog Hi,

Maﬂ = Baﬂ/\/t Kap— Ciﬂa Es— Fiﬁ/\ H,,,

Dy = Copsas+Cosyu+LLE,, + L33 Egg + MSS Hy, + M3 H, 5,
D,, = C},. exut+Cla¥a + L E g+ L33 Egg + M3% Hyp+ M35 Hy, (12.5)
Dy = Chpskop+ L8 Erg+ M3} H,
By, = Fuaer, + Flava+ MR Eqy+ MPL E p+ N3 Hop+ N Hyg,
B, = F}\pa K/\,M"‘F/l\a Y +M%25E13+N59[{]ﬂ,
By = Fipseap+FogVy + MBEgy+ M E s+ N3§Hyp+ Ny Hyy )

We consider one application in which the plate acts as an elastic wave guide, with the surfaces
z = + 1k of the plate regarded as perfect conductors. For such a plate

By=0, Ey=0 (z=+3h) (12.6)

and the surface values of D,;, H, are not known. The electromagnetic equations (12.3) are
particularly suitable for this problem since in these equations surface values of D3, H, do not

occur explicitly and By=0, By=0, E,=0, E,=0. (12.7)

It is now straightforward to discuss wave propagation in such a plate with use of equations (12.1),
(12.3), (12.5) and (12.7). Here we restrict attention to the special case of propagation in a large
plate, which can be regarded as rigid. The relevant equations are then (12.3), (12.7) and (12.5)
in which ¢,; = 0, y, = 0, k,5 = 0. After removing an exponential factor, i.e. exp {i(m,x, +w?)},
we obtain

(M35 +€,5mp) Egs + wMB E g+ 0Ny Hyp+oNGH = 0,)
(in/h) €xpE 5+ (0 M, 3+ €ap mﬂ) E3+wNY H, =0,
OMBEo+ (Mph+e,om,) Ejp+ 0Ny Hop+ 0 NGB Hyg = 0,
wLB Eps+ L Ey, + (0M33 +¢,5mp) Hy, + 0 M3 Hyg = 0,
0L Egs+ 0L E g+ oM Hyg+ (in/h) €5 Hy g+ (0M35 —€,5mp) Hyy = 0,
wLlF Ey+ (ﬂ)M%}? - €aﬂma) Hlﬂ = 0.

The condition for a non-zero solution leads, in a usual way, to a 9 x 9 determinantal equation for
o, which we do not discuss in detail here. We note that when the plate is isotropic, with a centre of
symmetry, the determinantal equation yields the values

pow® = mymy,  pew? = mym, +n /12, (12.9)

where €, u are the isotropic coeflicients for the electric and magnetic displacement vectors. The
values (12.9) are the lowest exact frequencies that would be obtained by an exact three-dimen-
sional solution of the wave guide problem for an isotropic plate.
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The theory of the present paper according to the representation under case (b) is also suitable
for problems studied by using a piezoelectric approximation. In this case the following consti-
tutive coeflicients are zero:

Fg/ﬁ’/\=0: Fiﬂ{i:O’ F2A=O,F;3=O’ ngﬁ/\=05

MR =0, M{=0, MS=0 ML=0 M}=0, (12.10)
Ng??=01 Ng:]i’:O: N}L}S‘=O’ N:%,g=0; N%:%:O:
so that By, =0, B,,=0, Bj;=0. (12.11)

The appropriate electromagnetic equations (12.3) with By = 0, B,; = 0, reduce to

E03,ﬂ_—E0ﬂ = 0, €aﬂE1ﬂ,a = 0, eaﬂEla’ﬂ = (n/h) eaﬂElﬂ-i-eaﬂElﬂ’ (12.12)
Dy, , = (n/h) Dy. (12.13)
Setting Eyy=-Dy o Ep=-9, ., (12.14)

where @,, @, are related to the applied voltages over the major surfaces z = + 44 of the plate
(distinct from the corresponding quantities in (11.5)), it follows from (12.12) that

Eyp=—-Dy, E,=-X, Ez=- (n/h) x — Dy, (12.15)

where y is a two-dimensional potential. Given the values of @,, @,, we have field equations (12.1)
and (12.13) for the kinematic variables and y. In such problems we usually need the value of the
normal component D, of the electric displacement vector at the surfaces of the plate. This can be
found from the representation

D, = h~tDy3— (2/h)} Dyysin (nz/h). (12.16)

More generality, which is needed for some types of piezoelectric plate problems, can be
achieved by retaining more vectors representing electrical effects and by using a Cosserat surface
%pfor P > 1. If we also interpret the mechanical part of the theory with the help of trigonometric
instead of polynomial representations, then we obtain equations similar to those effected by a
different procedure in Bugdayci & Bogy (1981), where some specific applications are also
discussed.

13. CIRCULAR CYLINDRICAL MEMBRANE

The effect of electromagnetic fields on the surface properties of either a part of a non-conducting
circular cylindrical shell or of a closed circular cylindrical shell can be studied as a special case of
the general membrane theory of § 9. We consider a complete circular cylindrical shell of radius a
under isothermal conditions that is free from body forces and has no applied stresses on its major
surfaces. We restrict discussion to linear piezoelectric membranes and to electromagnetic
variables corresponding to the representation under case (4), and consider only electromagnetic
fields o

Eys, Ey, Dj, Di. (13.1)
From (9.9), the piezoelectric field equations are
Eg s—Eop =0, ¢PE5,=0, Eyz=(n/h) Eyy+Ey, Df.= (n/h)D}.  (13.2)

Wlth EOOL = _¢0,a’ Ela = —¢1, as (133)
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where @, D, arerelated to the applied voltages over the major surfaces z = + 4 of the membrane,
it follows that Epy=—Py, Ej,=-Xao Eyz=-—(n/l)x—2, (13.4)

where ¥ is a surface potential.
The surface of the shell is given by the position vector

r=e,acos0+eyasinf+e,yz, (13.5)
where e; are constant orthonormal vectors and 0 < 6 < 2n. Then, selecting 6! = af, 62 = z,
we have
All = Al-l = A22 = A22 = 1 12 = A12 0 1 (13.6)
By =-a, B,=Byp=0,
where B,, is the curvature tensor of the membrane surface. The equations of motion (9.7)

reduce to Neb 5 = piie, —N/a = pid, (13.7)

where covariant differentiation now becomes partial differentiation with respect to 6. Also,
from (9.6)

ey =ty 1t uUs/a, €y =1y s, €15 =F(Uy a1y ). (13.8)
Inview of (13.6) we note that upper and lower indices denote the same values so that, for example,
W =uy, u?=u, ud=u;, (13.9)

The constitutive relations for N*#, D3, Di are given by (9.12), , with the 6, H,; variables omitted.
Values of the coefficients for case () are determined from the relevant expressionsin (6.25), (6.29)
and (9.15) if allowance is made for the appropriate tensor form for these coefficients. Thus,

Neb = Aaﬂ/\ﬂek,u _ COaﬂ3E03 _ Claﬂ/\ElA,
—_ COaﬂ3eaﬂ + l‘(lol”f:’anO3 + L013/\E1/1’

~ (13.10)
Dtil — Cl/\/tae/\ﬂ+L10a3E03 +LllaﬂElﬂ,
D% = L1133E13:
AUy = b33 00 +038]), APMCHP+ OO0 = 0, APCYlp+Clato=0, | (13.11)

L %0033 | J0033 — CH03C0p3 [ #1003 4 J103 — CHIACOaf3 [ #1104 [0 — i % Claﬂ,u’J
A;l:ﬂ/\,u = h_l‘yaﬂ/\w P = p*h
Caf® = h3k33, CYir = (28/mhd) kX, (13.12)
L*0033 — £%33 [ RO1A — [ #1003 — (28 /p) £*A3 [ *1 — fHdu,

14. A RIGID THIN SHELL AS A WAVE GUIDE

The problem of a stationary rigid shell regarded as a wave guide, in which temperature effects
are also disregarded, can be considered as a special case of the theory of §§ 2-4. Only electro-
magnetic variables will now appear in the theory and we consider only linear constitutive
equations, interpreting the theory according to the representations (B 13) or case () in (6.20).
Then the electromagnetic field equations (3.17)—(3.20) with £,, = 0, J,, = 0 become

A-Y( B3 AY) , = — (nM/h) By —[xa(2) B*G/AH]H,,, A-¥(D%AY), , = (nM/h) D%
B%I = —G“ﬂEMﬂ, @ B?w = —G“ﬂ{EMa,ﬂ— (nM/h) EM,B—[XM z Eﬂ]é;gh}’ (14.1)
Dy = et Hyp 0 Dy = et {Hars, p+ (RM [ k) Hyy g},
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where €# is the surface alternating tensor. The linear constitutive equations are
= L . . . L . Lo oo
Dy = X (LM™9Ey;+MMNiHy;), By = X (MNMEEy;+ NYNIHy,),  (14.2)
N=0 N=0

where the constitutive coefficients may be expressed in terms of the three-dimensional coefficients

S, g, ke in (D 8) of Appendix D. Here we add the further restriction that the shell is thin
compared with the minimum radius of curvature at any point of the material surface & identified
with the middle surface of the rigid shell. With this assumption, the constitutive coefficients
reduce to the following values, in which f7$, g7, h™ are evaluated on the middle surface of the
shell:

LMz = [ONef = 0 (M,N =0,1), LMNeb = febs, . (M,N > 1),
LVa3 — 0 (N=0,1,..), [MMa3=0 (M=0,1,...),

24 . oM (1 —(—1)M+N
= T

(M # N, M,N > 1),

LMNss — 335 (M,N =0,1,...),
MONaS — ( (N= 0, 1,...), MMMaf = ( (M= 0, 1:"'):
9} oM 1_(_1)M+N
Moap — 22 (1 _(_ 1)Mypar . MNof = i i | b
aoss = 2o (apnps (M3 1), M e

g
(M # N, M,N > 1),
MONa3 — MM0a3 — 0 (M, N =0,1,...),

MMNOL3 — h“%\MN (M’ N > 1), MMN30L — }l3a3MN (’M’ N > 0)’ (14"3)
MM =0 (M =0,1,...), MMM -0 (M=0,1,...),
21 2N (1—(—1)M+N
ON33 _ —( —1\N1 433 MN33 _ )\ "/ 33
e R e )

N (M # N, M,N > 1),
N *f = g“ﬂ&MN (M,N= O, 1’ ...),

NMoa3 =0 (M =0,1,...), NMMa3_0 (M=0,1,..),

NONas — HV{I _ ( - I)N}gas (N > 1), NMNa3 — {—]\g—z-_—le} ga3

T
(M# N, M,N > 1),
NMOB = 0, NON® =0 (M,N=0,1,..), NMN®=gs,  (MN>1).

When the stationary rigid shell isregarded as a wave guide, the conditions on the major surfaces
of the shell are

B =0, E;=0 (z=14h) (14.4)

so that the surface terms in (14.1) vanish. We consider, briefly, wave propagation in a long closed

thin rigid circular cylindrical shell whose middle surface is specified by (13.5) with the surface

metric tensor having the value in (13.6). The discussion is then limited to the electromagnetic

components

E03’ Eli: HOa: Hli’ D—g’ Di, %5 Bi (14'5)

and we assume that all quantities are proportional to exp [i{nf +mz + wt}] where n =0, 1,2, ....

The frequency equation may then be found from (14.1), with M = 0, 1, (14.2) and (14.3) with
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ELECTROMAGNETIC SHELLS AND PLATES 599

M,N =0,0; 1,0; 0,1. We merely note here that in the special case of an isotropic shell, the
frequencies are given by

pew? = m2+n2/a?, pew® = m?+n?/a®+n/h2, (14.6)

where u, € are the isotropic coefficients.
Further values of the frequencies could be found by extending the number of electromagnetic
variables used in (14.1)-(14.3) beyond those in (14.5).

The work of one of us (P. M. N.) was supported by the U.S. Office of Naval Research under
contract N00014-75-C-0148, project NR 064-436 with the University of California, Berkeley
(U.C.B.). During 1980, A.E.G. held a visiting appointment in U.C.B. and would like to acknowl-
edge the support of a Leverhulme Fellowship for the period 1979-80.

APPENDIX A

This appendix contains a brief summary of the three-dimensional theory of electromagnetism
of moving deformable media. In particular, all conservation laws and the associated local field
equations are recorded in order to provide some background information for some aspects of
the developments in §§ 2 and 3 of the paper.

Consider a body # consisting of particles X and let %, be the configuration of % at time ¢
bounded by a closed surface 0%,. A motion of the body is defined by a sufficiently smooth vector
function y which assigns to each X the place r* = y(X, ¢) in the configuration %,. Let &§ be a
regular material surface in %, with closed regular edges 0% and let Zf be a regular material
volume in %, with closed regular boundary surface 02 whose outward unit normal is u. The
electrodynamic and continuum balance laws are

d
Sl bda=-— *. da*
d 3-da:f h*-dx*—f j*-da (A2)
de J oo ot ot ’
b-da = 0, Fi-da:f edo, (A 3)
o7} o7t 7%
d
= * dy =
I g*p dv =0, (A4)
d
3 p*v*dv—f p*(f* +f*)dv+f tda, (A5)
t
g—f p*r*xv*dv:f {r*x(f*+f§‘)+cf}p*dv+f r* x tda, (A6)
dt J o * 07t
df pn*dv—f p¥(s* +&£*)dv— f k*da (A7)
ds o7; ’

d
(’:l—tf p*(e* +iv*-o¥)dv = fW{r* + (f* +f¥) 0¥ + Lk -curl* o* +wf} p* do
2t ;

f (f-o*—h*)da.  (AS)
0Py
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600 A.E.GREEN AND P. M. NAGHDI

In equations (A 1)—(A 8) and in the configuration %, at time ¢, p* is density, v* = 3(X,¢) is
velocity, f* is external body force density, f¥ is body force density and ¢¥ is body force couple
density due to the electromagnetic field, ¢ is surface traction across 025, 4* is flux of heat and £*
is flux of entropy across 02, e* is internal energy density, #* is entropy density, 7* is external
volume rate of supply of heat density, s* is external volume rate of supply of entropy density,
w¥ is the volume rate of supply of electromagnetic energy density due to the electromagnetic
fields, e is the electric field intensity, d is the electric displacement vector, h is the magnetic field
intensity (axial) vector, b is the magnetic induction (axial) vector, j is the current density, e is
the free charge, and

e* —e+v*xb, h* =h—v*xd, j*=j—ecv*. (A9)
Field equations that can be derived from (A 1)-(A 8) are
curl* e* = — (b +bdiv* o* —L*b), div*b = 0, 1
curl* h* = j* 4 d +ddiv* o* — L*d, divd =e¢,]
pE+prdivio* =0, p*o* =p*(f*+f¥) +div¢ T, t=Tu,
PATE+T —TT =0, pyj* = p*(s* +£%) —div* p*, k*=p*-u, h* =q*-u,) (All)
q* = 0%p*,  prre —div* @* —p*é* 4 p*ul + T+ L* 4 Lp*I* - L* = 0,

(A 10)

where 6* > 0 is temperature and
L* = 0v* [0r*, T¥z=cixz (A12)

for every vector 2. Also div¥, curl* are the divergence and curl operators with respect to the
position x*. '

Following Hutter & van de Ven (1978), we also make use of equations (A 1)-(A11) in a
material description with respect to a reference configuration of the body % whose points are
specified by the position vector R* and whose motion is defined by r* = y*(R*,t). Let f be a
regular surface in % with closed edges 0%, and let 2% be a regular volume in %y with a closed
regular boundary surface 027§ whose outward unit normal is 4y, corresponding, respectively, to
Sk, 0FF, P¥, 0PF in the configuration %,. Then, setting

F* = 3p* JoX*, I'* =detF* >0, pk=I*p*,
E = F*Te* H = F*Th*, D = I'*F*-'d, B = I'*F*-1p,

(A13)
I¥T = ToF*Y, t, = Tpug, E=I% J=I*Fx-ij,
I*p* =F*P§, I'*q* =F*‘1§> §=P§°uR, h%&:qlﬂ;'uRa qik{:a*Pﬁ:
we have 41 Baa-—[ E-ax* (A14)
dt J o %3
if D-da=| H-ax*—[ Jaa, (A15)
déJ oy ok Sk
B-dA =0, f D-da=| Eav, (A16)
7% a7k 7%
G e ar=[ pararnave| wmaa (A17)
dt J % 7% o7k
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ELECTROMAGNETIC SHELLS AND PLATES 601
f ok 1% x p* AV = f (7% x (F* +f%) + ) pi dV+f rhxtydd,  (A18)
PR

&J*pﬁn*dV=f P+ AV | KR4, (A 19)

07k
(;it pR(e* +iv*-p*)dV = f {r* 4+ (f* +f¥) -v* + Lc¥ -curl* o* +wi}pk dV
+J‘ (tgo*—HhE)d4. (A20)
o7%
Field equations that correspond to equations (A 14)—(A 20) are
Curl* E = —B, Curl* H=D+J, Div*B =0, Div*D = E,
pRO* = ph(F* +F2) +Div* T, pRIE + ToF¥T—F*TF =0,
piy* = pii(s* +£*) —Div* p,
plr* —Div¥ g — phé* +phwl + T F* + JpkTE - W* = 0,

(A21)

where Div*, Curl* are divergence and curl operators with respect to R* in the reference
configuration.

In the development of shell theory from three-dimensional equations of classical continuum
mechanics, it is convenient to introduce a system of curvilinear coordinates 6% (¢ = 1, 2, 3) in the
reference configuration of the body and regard these as a convected system of coordinates
throughout the motion. To provide some additional background information, consider a finite
three-dimensional body embedded in a Euclidean 3-space and identify each material point (or
particle) of the body by the convected coordinates #%. Further, let r* be the position vector, from
a fixed origin, of a typical particle in the present configuration of the body at time ¢; and, similarly,
let R* denote the position vector in a fixed reference configuration, which may be taken to be the
initial configuration of the body. Then in the context of the three-dimensional theory, various
kinematical results may be stated as

R* = R*(0%), r* =r*(0%t), G;=0R*/o0:, g,=0or*/o0",
Gi'Gi = 8;: gzg} = 8]1; Grij = G,;'Gj, G = Gi'Gj,
i = 8:°8; gi=g'-gl, g‘} = [£1828:], Gt = [G1G, Gy, (A 22)
F*=g,®G!, g=F*G, Gi=Fg,
Ir* =detF* = gt/G}, L* =3, ®g,
where g;, g are covariant and contravariant base vectors, respectively, g;; and g% are covariant
and contravariant metric tensors, respectively, in the configuration at time £, and &} is the

Kronecker delta. Corresponding quantities for the reference configuration are G;, G*, G;;, G¥.
Alsof . )
ti=Tg, th=TrG, gt'=CGy, T=t'®g, Tyr=th®G,
ghdiv* T = (gith) ; = (G}}),; = GEDiv* Ty, (A23)
ghp*-g' = Gip- G', ghdiv* p* = (glp*-g7) ; = (Glp}- GY),; = GiDiv¥ pj,

1 Some of the notation in (A 22) differs from the corresponding symbols used previously (Naghdi1g72; Green &
Naghdi 1976, 1979).

+ The notation g¥#i in (A 23), corresponds to T (or T;) used previously (for example, in Naghdi1972; Green &
Naghdl 1976).
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602 A.E.GREEN AND P. M. NAGHDI
a comma denoting partial derivative with respect to 6. The electromagnetic vectors may be
expressed in component forms by the relations
e* =¢fgi, h* =h¥gi, E=FEG, H=HG, d= Eigi,l
b =big, D =DiG, B=DBG, j*=j*g, J=JG, )
so that, with the help of (A 13), we have
E,=¢f, H,=Fkf GiDi=gid, GIB' =ghhi, GiJi=ghj*i, GIE =gle. (A25)

(A24)

To complete the three-dimensional theory we must specify values for I'* (or ¢¥), f¥ and w¥.
Here we record values that are a slight modification of those derived by Hutter and van der Ven

(x078): PRTE = T,—TT, prct = gixtl, t=T,g,
T,=e*®d+h* @b—L(e,e* e* +pu,h* -h*)1I,
PEf% = ee* +j* x b+ (d—e,e*)-Fe* +(b—pyh*)-Vh* +dx b
+(dx b) div* o* + L*(d x b), ) (A 26)
pruk + Lp*I*-L* = T,-L* +e*-j* +e* - (d +d div* v* — L*d)
+h*- (b +bdiv* v* — L*b),
pEwWE +YpET*L* = Ty F* +E-J+E-D+H-B, T'*T, = Ty, F*T,

where ¢, 4, are the electromagnetic coefficients for a vacuum.

AprPENDIX B

The purpose of this Appendix is to provide some formulae that arise in the development of shell
theory from the three-dimensional equations of classical continuum mechanics. Formulae of the
type obtained here have been given previously in the context of thermomechanical theory (see
Naghdi 1972; Green & Naghdi 1976, 1978). However, in this Appendix, we provide slightly more
general formulae, which include results from electromagnetism. For our present purpose, it is
convenient to adopt the notation 6% = z so that the convected coordinate system described in
Appendix A (preceding equations (A 22)) can be designated as 0% = (6, z), @ = 1, 2. Recalling
also from Appendix A the notation r* and R* for material points in the current and reference
configurations, respectively, we suppose now that the position vectors 7* and R*, as well as the
temperature field 6*, may be specified as

P
R* =R+ > /\N(Z)DN> R=R(0a)n DN=DN(64)’ 03:2’
N=1

P K
r¥=r+ ¥ AW(2)dy, 0* =0+ X py(2) Oy, (B1)
M=1

r=r6%1), dy=dy0%1), 0=000%t), 0 =0,(0%1t)

in the region z; < z < z,, where z;, z, are constants and where Greek indices take the values 1, 2.
The major surfaces of the shell correspond to z = z,, z = z,. Previously, Ay(z), uy(z) have been
taken to be powers of the variable 6% = z, namely z¥ (N = 1,2, ...). Here, to allow for greater
generality of interpretation, we leave Ay(z), ¢y(2z) unspecified except to say that Ay(z) are a set
of linearly independent functions in the interval z, < z < z,. A parallel statement holds for the
functions py(z). For example, they can be Legendre polynomials or trigonometric functions.
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ELECTROMAGNETIC SHELLS AND PLATES 603

Using the notation and definitions of § 2, we have

23 2y
phGidz =f p*gtdz,

2

pRA% =pa% :f

21

pr AbyNo = palyNo = f " PR Gl (2) dz = f preddg(z) dz, (B2)

pr ANV = palyNH = j " pEGIAy(2) Agy(2) dz = f e () Aul2) dz,

Zy (2}
Negh —  Nedb = f gtedz — f Gl dz,

MPegh = , MNe4} = f “ gty (2) dz = j "Gtz Ay (2) dz, (B3)

2.

ENgk — kNAL — f "Ny (z) dz = j " G Ny(2) dz,

2

pfat = pg fAY = f p*gif* dz +[#(gg®®)8], ., +[£(gg®)} ).,

2,

= J‘ Zzph G%f* dz + [tR(Ggsa):}]z=zl +[tr(GG) é]z=zz’
pfeat = pr fedt = f:p*g%fé‘ dz = L prGYf ¥ dz,

plVat = pp INAY = fzzp*g%f *An(2) dz +[tAy(2) (88%) oms, + [#AN(2) (88%°)H ),

- (B.4)
= L PRGH*Ay(2) dz + [t Ay(2) (GC®)H],_,, +[tr An(2) (GG®)E],_,,

plab = pr IV AY = f " prglft Ay(z) dz = f " PR GIf ¥ () dz,

2

pcea% =pRCeA% =f

2

Z

2 22
p*gicidz = f P Ghed dz,
1 2y

2o (23
pinat = pr i = [ prei(us +4re 1) dz = R GHw +rE-L) s
1 2y

2,

pnat = ppndt = f “prebytdz = f P Gly* dz,
- - (B5)

2

2 23
pryat = ppiy At = f p*gin*py(z) dz = f PR Gin* puy(2) dz,

%

% 1 1 1
psat = pysdt = L p*ghs* dz —[k*(gg%) s, — [K* (86%)}]. s,

= f " phGls* dz — [ (GG, — [KE(CO™)],..,,

2, .
psyat = ppsy At = f | Prgs*un(2) dz —[k*(2%) piy(2) Jome, — [F* (88%)} iy (2) ]y

= [ ot G1s* iy (@) dz— TR(GE™)1 iy ()]s, ~ TRE(GC) b ()],
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604 A.E.GREEN AND P. M. NAGHDI
pat — pidh = f "k ghe® dz = f ® ok Gig* dz,

pExab = priy At = f prgE*ug(2) dz + f gip* gt pi(2) dz (B7)

— [Toncienun dz [ Gtpt- G aiv(z)
praat = zp- A4t = f:zg%p* gedz = f Gip¥-G*dz,
py-aval = npy- Al = [ gip*-gepy(2)dz = [ Glpt Gruy(z) dz.
In (B3)-(B7), Ax(2) = ddy(2)/dz, wy(2) = dpux(2) /dz.

We turn now to the development of a theory for the electromagnetic fields based on Cosserat
surfaces. It is convenient to introduce two other sets of functions ¥y (z), yy(z) in the interval

z; € z € z,, this time for N = 0, 1,..., L, with the properties
[T os@ v dz =, [ a2 t(2)dz = B (B9)
dlﬁN N dyy _ Yook
X {E YN Xk (2), dz KZ;JO XNV k(2). (B 10)
We mention two examples. If Py(x) is a Legendre polynomial of order N we set
2N + 1)% 2z—2,—2,
(2) = Py(2) = Py(p), p=""C01T2 (N=0,1,2,.00),
xs() = ¥l = (S ) Bul), p=EBE )

K __ K _ K
XN =V¥N =k,
where

=2(2N+1)¥ (2K +1)%/(z,—2,), K=0,2,..,N-1; & =0,
K=1,3,...,(Nodd)

(B12)
=2(2N+ 1)} (2K +1)}/(2,~2,), K=1,8,..,N—1; & =0,!
K=0,2,...,(NevenorN = 0).
The second example uses orthogonal trigonometric functions of the form
Yy = 25z, —z,) Esin {Nn(1 +p)},
¢]I§=O (K7éN)’ ¢§=Nn(z2~zl)—l (K=N)7
(B 13)

Xy = (z—=2)7F (N=0), xy=2z—z)Fcos{}Nn(1+p)} (N=1,2,..),
xK=0 (K#N), x§=-Nn(z—2z)" (K=N),

or we may interchange the functions ¢y and yy, ¥¥ and yX.

We first deal with the spatial forms (A 1)-(A3) of the electromagnetic equations and the
corresponding field equations (A 10). Multiplying (A 10), 4 by xx(2) znd ¥ry(z), respectively,
and integrating over a material region &Z* in the configuration at time ¢ gives

xs(b-da= [ xv(2)g b, (B14)
oP* P*

f Yy(2)d- da = f (Wl2) e+ ¥(2) g8 ) do, (B 15)
0P* P*
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ELECTROMAGNETIC SHELLS AND PLATES 605

where a prime denotes derivative with respect to z. Next, we take the scalar product of (A 10),
with g%y (z) and integrate over #*; also we take the linear transformation of (A 10), with
X~ (2) a, ® g* and integrate over Z*. This yields the equations

if ¢N(z)b~g3dv=f Ury(2) g3 x e* - da, (B 164)
dz J o>
G v@rad = @ le e alegena [ x@) alexen-da.
dz VAl P op*
(B 164)
Similarly, from (A 10), we have
d - .
L@@ ea-- nE@exnrdo-[ x@ived B
[ @ @aa ~ [ (~vi@ FLa, () alg g
¢ P P*

+a,(j*- g*) Yn(2)}do +f . ¥y(z)a,[g*x h*]-da. (B175)
0P*
In (B16) and (B 17) we have used the tensor L where

. L=a,®ad, a,=La, a®=a, ] (B18)
F=LF, F=a,®A’, a,=FA, detF=1I=a}/4}|

Similar equations in material form can be obtained from (A 21) if we replace £*, 92*, da,
dv, e*, h*,d, b, ¢, j*, a,, a*, a; by P% 02% dA,dV,E, H,D, B, E, J, A,, A% Aj, respectively,
and omit all terms containing the tensor L.

Equations (B 14)-(B 18), together with their material counterparts, are now applied to a
shell-like body bounded by the surfaces z = z,, z = z, and a surface f (6, 6%) = 0. The resulting
integrals are over material surfaces & in the surface z = 0 in the present configuration at time ¢,
bounded by 02 whose outward unit normal in the surface is v, with corresponding surfaces
bounded by 04 in the reference configuration with outward unit normal v, where

v=v,a*=71%a,, gv=pgV,A*=gV*A4, (B19)
N N
bN'VdJ zf ( Z X]IgbK_bN)’dO', (BQO)
[ P \K=0
- N - A
f d}v'vds =f eNdO"I'f ( Z 1ﬁ§dK—-dN)’d0', (B 21)
07 4 2 \K=0
d &
Q[ byde=—[ et-dr, (B224)
dt) o o7

(%L, (0, xBy) xdo = [ (e3-ay) dr+fgL[(a3 X by) x do] +f

N
(é;s— 5 x%se}z) x do,
P K=0

(B 225)
Ef dy-de =f h;l;,.d,-_f j-de, (B23a)
dt ) » oz »
_Edtf (agx dy) xde = f (h%-ay) dr+f {(83 % j%) x do — L[ (a5 x dy) x do]}
Z 07 P

A N
+f (h;‘:,— % zﬁgh;)xda. (B235)
P K=0
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606 A.E.GREEN AND P. M. NAGHDI

Slmllar balance equations in material forms may be obtamed by replacmg el, hi by, dy, 6%,
hN: bN: dl\n eN» ]Nav das dr a;, a bY N> HN: BN: DN, EN: HNa BN: D\’, EN: N> RYs daR: dR Aw
A?, respectively, and omitting the terms containing the tensor L. In these balances we have used
the following definitions: do = a;do, dop = Azdog,

el = ekial, hi =1hial, by=bya, dy=dya,
jh =j¥a, &y =I[xn(2)e a’]z,, hy = [¥n(2) Kfa']2,
by = [xn(2) biasgt/atlz, dy = [Yy(z) dia;g/ab ]2, (B24)
Ey = ENi As, Hy = }INi As, By = B§\7Ais DV = DNA'
Iy =JNA;, Ey=[xn(2) E; A2, Hy = [Yy(2) H AYZ,

By - (1 (2) BiAGY A, Dy = [y(2) D'A,GY/ 4V,

where F, I' are given in (B 18) and where, recalling (A 25),

ArBY = arb%y = f% xn(z) GEB*dz, ABY = atby = f22 Vn(z) GEB3dz, (B26a,b)

A¥DY = a¥d% = f22 Yn(2) GED*dz, AiDY = a¥d% = J‘zz xn(z) GED3dz, (B27a,b)

s 22
Eye = e = f Yn(2) E,dz, Eyg = ey = f 8(2) Eydz, (B 284, 0)
Hy, = i, = f " xw(z) Hydz, Hyy = iy = f ") Hydz, (B294,0)

A3JY = e = fza Un(z) GEJedz, AT} = a3 = fzzx,;y(z) G*J3dz, (B30a,b)
AEy = dbey = f " Un(z) GAEz. (B31)

Finally, in this Appendix, we record some results that arise when the position vector, velocity
vector and electromagnetic vectors e*, h*, E, Hin the shell have the approximate representations

P P
rt=r+ ¥ Ay(2)dy, v*=v+ T Ay(z) wy,
N=1 N=1

DM~

L
er = X W@k g tan(2) ena &) h* = X {xn(2) M g +Vn(2) M 8%, ) (B32)

L
E= 2 {Un(2) En. G* +xn(2) Ey3 G®}, H = 2 {xn(2) Hy, G*+y(2) Hy; G},

0

i

where, in view of the orthonormal properties of ¢y (z), xy(2) in the interval z;, < z < z,, X, b,
Ey;, Hy; are given by (B 284)—(B 296). From (A 26), (B 32) and (B 26)—(B 31), it follows that

2y P
f prg(wk + 30 L¥) dz = aH{N2-w + 3 (kY -wy+ MDY=y, )

2y N=1

L - — — .
b Y {ebjtrel (dy+dydiv,o—Ldy) +hi- (by+bydiv,o—Lby)}, (B33)
N=0

(2 P
f P GH(wk +3Tk-L*)dz =A¥gNi-v ,+ 3 (gl -wy+gMY*-wy )

21 N=1

L . .
+ X (Ey-Jy+ Ey-Dy+Hy-By)}, (B34)
N=0
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ELECTROMAGNETIC SHELLS AND PLATES 607
where N%, o N2, k,, pke, M% M2 are given in terms of £, 3! by formulae of the same type as
(B3). Also

24 P
f pctgidz = a’%{aax Ni+ X (dyxkY+dy ,x Mf""‘)}
2y N=1
P
— Ao, NS+ 3 (dy k) +dy o x M) (B35)

N=1

ArreEnDIX C

This Appendix contains a brief discussion of the specific Helmholtz free energy response
function ¥* in the three-dimensional theory of magnetic, polarized thermoelastic shells, along
with related details arising from symmetry restrictions. In its reference configuration, the shell is
assumed homogeneous and is of constant reference density and constant reference temperature.
The Helmholtz free energy function ¢* for such a medium has the form

7;#* = 7#* (gij’ e*aEz‘, }Iu Gij): (C‘ 1)

where the dependence on the constant reference temperature © has not been displayed. We
suppose that the position vector of the reference configuration of the body is specified by

R* =R+ ¥ Ay(z)Dy (C2)
N=1
and that the position vector and temperature of the body in the configuration at time ¢ are given by

r¥ =r4+ § Ay(z)dy, 0% =0+ 3 py(z) Oy, Ay =dy; @', dy ,=dy;,a' (C3)

N=1 M=1

Also the components of the electric and magnetic vectors at time ¢ are represented by

E,= 3 Yyn(2)Enyy H,= X xn(2)Hyyy Es= X xn(2)Ens, Hy= X ¥y(2) Hys.
N=0 N=0 N=0 N=0
(G4)
Then (C 1) may be expressed in the form
Yk =% (@aps ARi> Arias 0 Oss Enres Haris Dris Drias Aups 2)- (C5)

We consider now two cases in which the functions chosen for Ay, g, ¥y, X have different
properties when z is changed to —z.

case (a)
Av(=2) = (=1)VAy(2), pu(=2) = (=1)"pa(2),|

Yn(=2) = (=502, xul(=2) = (=" xu(2).]
In view of (C 6), y* in (C5) has the property
%ﬁ* (aaﬂa dri> Apias U5 O3y Engis Hypis Dris Diios Aaﬂa —z)
= %ﬁ*(aaﬂa (— 1)+ gy, (= 1)Bdpyy, 0, (= 1)S Og, (= )M Epyyy (= 1) Hyyy
(= 1)B+1 Dy, (= 1)EDgy,, Aaﬂ’ z). (C7)

case (b)
An(=2) = (=N Ax(2), puy(—2) =(=1)Mpy(2), 1

Un(=2) = (= )% Py(2), xar(—2) = (= )M xp(2),)

43 . Vol. 509. A

(C8)
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608 A.E.GREEN AND P. M. NAGHDI

which implies that

g* (@aps Arits Trias 05 Oss Engas Engss Huras Harzs Dris Drias Aupy —2)
= P (agp (= )Fdy, (= 1)Edyye, 0, (= 1)5 Os, (— 1) Epgg, (= 1)M Epgy,
(= )M Hypg, (— )M Hyyg, (= )78 Dy, (= 1)7 Diyg 4o 2). - (G9)
Given the expansions (C 2)-(C4), the complete theory may be represented in a form similar
to the results in the theory of Cosserat surfaces with an infinity of directors, along with tem-

peratures and electromagnetic variables. The two-dimensional Helmholtz free energy function ¥
that corresponds to (C 5) is then given by

3h
patty = pr v = | | FRChy dz (C10)
—3h

provided the material surface & of the Cosserat surfaces %y is identified with the middle surfaces
of the shell of thickness % in the reference configuration. Then, with this geometrical symmetry,
since p¥ is constant and G* has symmetry properties similar to those of ¥ *, it follows from (C7)
and (C9) that ¢ satisfies the conditions

case (a)
Y (@up (= 1)E dyy, (= 1)Bdpy,, 0, (—1)5 05, (— 1) Epy,
( - I)MHMia (2] (_ 1)R+1 DRi)( - I)RDRiw Aaﬂ)
= w(aaﬁb dyi> ARias 0, Og5 Eris Hari, Dris Drias Aaﬂ)) (C11)
case (b) ‘

lﬁ(aaﬂs ( - 1)R+1 dRi: ( - I)RdRiw 0) (’— I)S 08s ( - 1)M+l EMaa ( - 1)ME‘M& ( - I)MHMas
(= )M Epgg, (= 1)B4 Dy, (— 1)% Diygy Aop)
= W%ﬂ, dR?h dRias 0s 0S> 03) EMas EMss HMac) I_1M3s DRi) DRiw Aaﬂ) . (C 12)

Next, suppose that the material of the shell has symmetry with respect to reflexions along the
normal direction A, to its reference surface. Then, making use of (C:5) and (C 7), we have

case (a)
;ﬁ* (@05 Aras AR dRaps AR3as 05 Oss Enras Enrss Haros Hurss Dras Drss DRaﬂa Drgsas Aaﬂ’ z)
= P* (@ (— 1) P dpg, (— 1)+ dgg, (= 1) R dpgp, (— 1) dpgy, 0, (= 1)5 05, (= 1)M Eng,
(= 1)+ Epgg, (= 1M Hyp, (— 1) Hyggy (— 1)F D,y (= 1) Dy, (— 1)% Doy,
(= 1)EH Dys,, Aaﬂa -2z)
= lﬁ* (aaﬂs —dRas A3 dRaﬂ) —drsas 0,03, Epras — Epgsy — Hygoy Hyps, — Dyos Diras Draps
—Drgayy Agpy2)  (C13)
if we recall that H,, is an axial vector. Similarly, using (G 5) and (CG9) we see that
case (b)
'ﬁ* (aaﬂa dRas drs3s dRaﬂ> dr3a> 0, O3, Enras Enrss Haras Hyrss Dras Dras Dyags D35 Aaﬂ’ z)
= lp*(dam —dRy, drs, dRaﬂs —dr3ys 05 055 Eyras — Eprsy — Hagos Hygs, — Doy Dyss DRaﬂ)
— Dy, Ayp2).  (C14)
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ELECTROMAGNETIC SHELLS AND PLATES 609

APPENDIX D

We record here some results appropriate for the linear three-dimensional theory of a magnetic,
polarized thermoelastic solid, which will be helpful in identification of constitutive coefficients
in the direct formulation of the theory of plates. We suppose that the elastic solid in its reference
state is homogeneous, at constant temperature 8, is unstressed and is free from electromagnetic
fields; but is, in general, anisotropic. We use rectangular Cartesian coordinate axes x; along a
constant orthonormal system of base vectors e;, as well as vector and Cartesian tensor notation,
throughout this Appendix. In the linearized theory, 8 + 6* is temperature, p* is reference density,
u* = ufe, is displacement, ¢5 = 3(u; +uf ;) is strain, ¢;; is the symmetric stress tensor, 7* is
entropy density, ¥ * is free energy density, £* is the internal rate of production of entropy density,

* = p¥e, is the entropy flux vector and E = E,e,, H = H,e;,, D = D,e,, B = B;e;, J = J,e,,
E are the electromagnetic variables. The constitutive relations are:

P*?/f* = %cijrs ezkj e;‘; - cij 31?;‘ 0* — %00*2 - %frsEr Es - %grer Hs )
"hrsErI_Is"krste;lg Et"'lrste;‘; Ht +ﬁ'Er 0% +gr117 ‘9*,

—_ % * —
= Cijrsbrs — Ci3 0% —kyje Ey — Ly Hy,

Lij

p*n* = cyefi—f, E,— g, H,+ 0%, (D1)
D, = foo Eg+ by Hy + kyyy €5 — [, 0%,
B, = g Hy+hy E + 1y, e — g, 0%,

==k 05 —a, E;,  Jp=1;0%5+ by, E;, )

J E;—pf 0% = p* (@ +0*%) £* > 0. (D2)

The condition (D 2) arises from thermodynamical considerations. The notation () , denotes
partial differentiation with respect to x; and the Cartesian tensor summation convention with
repeated suffices is used. The various coefficients are constants and subject to the following
restrictions:

Cijrs = Cjirs = Cijor = Cpsis  Cij = Cji» j;'s zf;r’ 8rs = Zars krst = ksrt, lrst = lsrt' (D 3)

In making use of these results it is convenient to express them in a partially inverted form
655 = Sijrstes + 545 0% — ki By — 5 Hy,y
pEN* = syt —f7 E, — g H, +c*0%,
D, = — k¥ t;;—fF 0% —f E,— i H,,

* * * ol
B, = —liylyy=g' 0% — Koy~ g H,

(D4)

where the coefficients have symmetry restrictions similar to the corresponding coefficients in
(D 3). Also

— 1 — — —c¥* 2 8. =
cij’rssrsmn - f(aim é‘jn + 6@77, ajm)) cijrssrs cij - 0: c—¢ —I-C” Jv.] 03
%k —_— %k — ko — ko__ _
Coirshrie +Rige = 0y Cijpslise +1ije = 05 fF = fo—Siikizes & = & —Sijlijes (D5)
* — % # — * * - %
er +f;s = kijrkii83 hTS +hrs = kijrlif89 Grs + &g = lijrliJSJ

with similar formulae in which ¢;;,,, ¢;; are interchanged with s;,,, $,;, respectively, and in which
starred and unstarred quantities are interchanged.
Material symmetries will restrict the number of independent coefficients in (D 1). Here we
43-2
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610 A.E.GREEN AND P. M. NAGHDI

list the restrictions imposed on (D 1) for two cases. If the material is orthotropic with respect to the
orthonormal system of vectors e;, then the only non-zero coefficients in (D 1) and (D 2) are

C11115 C11225 C22225 C12125> C11335 22335 C1313>
C2393> €3333> C11> Ca2> 33> € S11> So2s Soss (D 6)
811> 829> 833> 193> Lazns Lanas

k115 Kaas Kagy 115 Bags Bazy L1, ag, I3s, @115 Qag, Ggs

together with the coefficients connected with (D 6) by the relations (D 3).

The second class of materials, which includes as a special case the rotated Y-cut quartz plate,
is such that there is symmetry with respect to rotation about the e, direction through an angle =.
For this class the only non-zero coefficients in (D 1) and (D 2) are

11115 11225 €1133> C22225 C2233> €3333) C1212 C1313> €2323> C1113> C2213> €33135 C1223
€115 Cazs €33 €135 O fos 25 S115 S22 f3 S 13> G115 G2 E33> G135
h11> h133 h31: h33> h22> k121’ k123> k2313 k233’ k1125 k222) k132) k332’ (D 7)

1121> 11233 l231: 1233: l112: l222’ 1132’ l332’ kll: k22: k33: k13s b11> b22: b33s 1713,

dlb ‘722> ‘7333 513, llla 122: l33s 1133

together with coeflicients connected with (D 7) by the relations (D 3).
For some purposes we need to express the Helmholtz free energy in terms of functions defined
in a general curvilinear system of coordinates. Then, (D 1) is replaced by

PP = Jciimseli of — el 0% — §e0*2 — 4 frE, E — §gmsH H— hE, Hy
— krste, E, — lrste, H, + f7E, 0% + g"H,0%, (D 8)

where the coefficients may now depend on the curvilinear coordinates x¢ even if the material is
homogeneous. The constitutive equations for p*¢, J* become

¥ = — k0% —GIE;, Ji = 0%+ bUE,. (D9)
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